版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省蘇州工業(yè)園區(qū)星湖學校2026屆數學九年級第一學期期末質量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,四邊形是邊長為5的正方形,E是上一點,,將繞著點A順時針旋轉到與重合,則()A. B. C. D.2.如圖下列條件中不能判定的是()A. B.C. D.3.在半徑為的圓中,挖出一個半徑為的圓面,剩下的圓環(huán)的面積為,則與的函數關系式為()A. B. C. D.4.如圖,已知二次函數y=(x+1)2﹣4,當﹣2≤x≤2時,則函數y的最小值和最大值()A.﹣3和5 B.﹣4和5 C.﹣4和﹣3 D.﹣1和55.二次函數下列說法正確的是()A.開口向上 B.對稱軸為直線C.頂點坐標為 D.當時,隨的增大而增大6.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術節(jié)文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.7.如圖,一條拋物線與軸相交于、兩點(點在點的左側),其頂點在線段上移動.若點、的坐標分別為、,點的橫坐標的最大值為,則點的橫坐標的最小值為()A. B. C. D.8.二次函數y=x2﹣2x+1與x軸的交點個數是()A.0 B.1 C.2 D.39.圖①是由五個完全相同的小正方體組成的立體圖形.將圖①中的一個小正方體改變位置后如圖②,則三視圖發(fā)生改變的是()A.主視圖 B.俯視圖C.左視圖 D.主視圖、俯視圖和左視圖都改變10.如圖,AE是四邊形ABCD外接圓⊙O的直徑,AD=CD,∠B=50°,則∠DAE的度數為()A.70° B.65° C.60° D.55°11.如圖,△ABC內接于圓O,∠A=50°,∠ABC=60°,BD是圓O的直徑,BD交AC于點E,連結DC,則∠AEB等于()A.70° B.110° C.90° D.120°12.如果反比例函數y=kx的圖像經過點(-3,-A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限二、填空題(每題4分,共24分)13.有五張分別印有圓、等腰三角形、矩形、菱形、正方形圖案的卡片(卡片中除圖案不同外,其余均相同),現將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到有中心對稱圖案的卡片的概率是________.14.若反比例函數y=的圖象在每一個象限中,y隨著x的增大而減小,則m的取值范圍是_____.15.若兩個相似三角形的周長比是,則對應中線的比是________.16.如圖,拋物線(是常數,),與軸交于兩點,頂點的坐標是,給出下列四個結論:①;②若,,在拋物線上,則;③若關于的方程有實數根,則;④,其中正確的結論是__________.(填序號)17.有一個正十二面體,12個面上分別寫有1~12這12個整數,投擲這個正十二面體一次,向上一面的數字是3的倍數或4的倍數的概率是.18.如圖,已知四邊形ABCD是菱形,BC∥x軸,點B的坐標是(1,),坐標原點O是AB的中點.動圓⊙P的半徑是,圓心在x軸上移動,若⊙P在運動過程中只與菱形ABCD的一邊相切,則點P的橫坐標m的取值范圍是_________.三、解答題(共78分)19.(8分)有六張完全相同的卡片,分兩組,每組三張,在組的卡片上分別畫上“√,×,√”,組的卡片上分別畫上“√,×,×”,如圖①所示.(1)若將卡片無標記的一面朝上擺在桌上,再分別從兩組卡片中隨機各抽取一張,求兩張卡片上標記都是“√”的概率(請用“樹形圖法”或“列表法”求解).(2)若把兩組卡片無標記的一面對應粘貼在一起得到三張卡片,其正、反面標記如圖②所示,將卡片正面朝上擺在桌上,并用瓶蓋蓋住標記.①若隨機揭開其中一個蓋子,看到的標記是“√”的概率是多少?②若揭開蓋子,看到的卡片正面標記是“√”后,猜想它的反面也是“√”,求猜對的概率.20.(8分)“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運動商城的自行車銷售量自年起逐月增加,據統(tǒng)計該商城月份銷售自行車輛,月份銷售了輛.(1)求這個運動商城這兩個月的月平均增長率是多少?(2)若該商城前個月的自行車銷量的月平均增長率相同,問該商城月份賣出多少輛自行車?21.(8分)已知:如圖,在△ABC中,AD⊥BC于點D,E是AD的中點,連接CE并延長交邊AB于點F,AC=13,BC=8,cos∠ACB=.(1)求tan∠DCE的值;(2)求的值.22.(10分)拋物線經過點O(0,0)與點A(4,0),頂點為點P,且最小值為-1.(1)求拋物線的表達式;(1)過點O作PA的平行線交拋物線對稱軸于點M,交拋物線于另一點N,求ON的長;(3)拋物線上是否存在一個點E,過點E作x軸的垂線,垂足為點F,使得△EFO∽△AMN,若存在,試求出點E的坐標;若不存在請說明理由.23.(10分)如圖,為了估算河的寬度,我們可以在河對岸選定一點,再在河的這一邊選定點和點,使得,然后選定點,使,確定與的交點,若測得米,米,米,請你求出小河的寬度是多少米?24.(10分)因2019年下半年豬肉大漲,某養(yǎng)豬專業(yè)戶想擴大養(yǎng)豬場地,但為了節(jié)省材料,利用一面墻(墻足夠長)為一邊,用總長為120的材料圍成了如圖所示①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,設的長度為(),矩形區(qū)域的面積().(1)求與之間的函數表達式,并注明自變量的取值范圍.(2)當為何值時,有最大值?最大值是多少?25.(12分)如圖,已知在△ABC中,AD是∠BAC平分線,點E在AC邊上,且∠AED=∠ADB.求證:(1)△ABD∽△ADE;(2)AD2=AB·AE.26.“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據旋轉變換的性質求出、,根據勾股定理計算即可.【詳解】解:由旋轉變換的性質可知,,∴正方形的面積=四邊形的面積,∴,,∴,,∴.故選D.本題考查的是旋轉變換的性質、勾股定理的應用,掌握性質的概念、旋轉變換的性質是解題的關鍵.2、C【分析】根據相似三角形的判定定理對各個選項逐一分析即可.【詳解】A.,可以判定,不符合題意;B.,可以判定,不符合題意;C.不是對應邊成比例,且不是相應的夾角,不能判定,符合題意;D.即且,可以判定,不符合題意.故選C.本題考查了相似三角形的判定定理,熟練掌握判定定理是解題的關鍵.3、D【分析】根據圓環(huán)的面積=大圓的面積-小圓的面積,即可得出結論.【詳解】解:根據題意:y=故選D.此題考查的是圓環(huán)的面積公式,掌握圓環(huán)的面積=大圓的面積-小圓的面積是解決此題的關鍵.4、B【解析】先求出二次函數的對稱軸為直線x=-1,然后根據二次函數開口向上確定其增減性,并結合圖象解答即可.【詳解】∵二次函數y=(x+1)2-4,對稱軸是:x=-1∵a=-1>0,∴x>-1時,y隨x的增大而增大,x<-1時,y隨x的增大而減小,由圖象可知:在-2≤x≤2內,x=2時,y有最大值,y=(2+1)2-4=5,x=-1時y有最小值,是-4,故選B.本題考查了二次函數的最值問題,二次函數的增減性,結合圖象可得函數的最值是解題的關鍵.5、D【分析】根據解析式即可依次判斷正確與否.【詳解】∵a=-2∴開口向下,A選項錯誤;∵,∴對稱軸為直線x=-1,故B錯誤;∵,∴頂點坐標為(-1,-4),故C錯誤;∵對稱軸為直線x=-1,開口向下,∴當時,隨的增大而增大,故D正確.故選:D.此題考查二次函數的性質,掌握不同函數解析式的特點,各字母代表的含義,并熟練運用解題是關鍵.6、B【解析】試題解析:列表如下:∴共有20種等可能的結果,P(一男一女)=.
故選B.7、C【分析】根據頂點在線段上移動,又知點、的坐標分別為、,再根據平行于軸,之間距離不變,點的橫坐標的最大值為,分別求出對稱軸過點和時的情況,即可判斷出點橫坐標的最小值.【詳解】根據題意知,點的橫坐標的最大值為,此時對稱軸過點,點的橫坐標最大,此時的點坐標為,當對稱軸過點時,點的橫坐標最小,此時的點坐標為,點的坐標為,故點的橫坐標的最小值為,故選:C.本題考查了拋物線與軸的交點,二次函數的圖象與性質.解答本題的關鍵是理解二次函數在平行于軸的直線上移動時,兩交點之間的距離不變.8、B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函數y=x2-2x+1的圖象與x軸有一個交點.故選B.9、A【分析】根據從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上邊看得到的圖形是俯視圖對兩個組合體進行判斷,可得答案.【詳解】解:①的主視圖是第一層三個小正方形,第二層中間一個小正方形;左視圖是第一層兩個小正方形,第二層左邊一個小正方形;俯視圖是第一層中間一個小正方形,第二層三個小正方形;②的主視圖是第一層三個小正方形,第二層左邊一個小正方形;左視圖是第一層兩個小正方形,第二層左邊一個小正方形;俯視圖是第一層中間一個小正方形,第二層三個小正方形;所以將圖①中的一個小正方體改變位置后,俯視圖和左視圖均沒有發(fā)生改變,只有主視圖發(fā)生改變,故選:A.本題考查了三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.10、B【分析】連接OC、OD,利用圓心角、弧、弦的關系以及圓周角定理求得∠AOD=50°,然后根據的等腰三角形的性質以及三角形內角和定理即可求得∠DAE=65°.【詳解】解:連接OC、OD,∵AD=CD,∴,∴∠AOD=∠COD,∵∠AOC=2∠B=2×50°=100°,∴AOD=50°,∵OA=OD,∴∠DAO=∠ADO=,即∠DAE=65°,故選:B.本題考查了圓中弦,弧,圓心角之間的關系,圓周角定理和三角形內角和,解決本題的關鍵是正確理解題意,能夠熟練掌握圓心角,弧,弦之間的關系.11、B【解析】解:由題意得,∠A=∠D=50°,∠DCB=90°,∠DBC=40°,∠ABC=60°,ABD=20°,∠AEB=180°-∠ABD-∠D=110°,故選B.12、B【解析】根據反比例函數圖象上點的坐標特點可得k=12,再根據反比例函數的性質可得函數圖象位于第一、三象限.【詳解】∵反比例函數y=kx的圖象經過點(-3,-4∴k=-3×(-4)=12,∵12>0,∴該函數圖象位于第一、三象限,故選:B.此題主要考查了反比例函數的性質,關鍵是根據反比例函數圖象上點的坐標特點求出k的值.二、填空題(每題4分,共24分)13、【詳解】∵圓、矩形、菱形、正方形是中心對稱圖案,∴抽到有中心對稱圖案的卡片的概率是,故答案為.14、m>1【解析】∵反比例函數的圖象在其每個象限內,y隨x的增大而減小,∴>0,解得:m>1,故答案為m>1.15、4:9【分析】相似三角形的面積之比等于相似比的平方.【詳解】解:兩個相似三角形的周長比是,∴兩個相似三角形的相似比是,∴兩個相似三角形對應中線的比是,故答案為.16、①②④【分析】根據二次函數的圖象和性質逐一對選項進行分析即可.【詳解】①∵∴即,故①正確;②由圖象可知,若,,在拋物線上,則,故②正確;③∵拋物線與直線有交點時,即有解時,要求所以若關于的方程有實數根,則,故③錯誤;④當時,∵∴,故④正確.故答案為①②④本題主要考查二次函數的圖象和性質,掌握二次函數的圖象和性質是解題的關鍵.17、【詳解】解:這個正十二面體,12個面上分別寫有1~12這12個整數,其中是3的倍數或4的倍數的3,6,9,12,4,8,共6種情況,故向上一面的數字是3的倍數或4的倍數的概率是6/12=故答案為:.18、或或或【分析】若⊙P在運動過程中只與菱形ABCD的一邊相切,則需要對此過程分四種情況討論,根據已知條件計算出m的取值范圍即可.【詳解】解:由B點坐標(1,),及原點O是AB的中點可知AB=2,直線AB與x軸的夾角為60°,又∵四邊形ABCD是菱形,∴AD=AB=BC=CD=2,設DC與x軸相交于點H,則OH=4,(1)當⊙P與DC邊相切于點E時,連接PE,如圖所示,由題意可知PE=,PE⊥DC,∠PHE=60°,∴PH=2,∴此時點P坐標為(-6,0),所以此時.(2)當⊙P只與AD邊相切時,如下圖,∵PD=,∴PH=1,∴此時,當⊙P繼續(xù)向右運動,同時與AD,BC相切時,PH=1,所以此時,∴當時,⊙P只與AD相切;,(3)當⊙P只與BC邊相切時,如下圖,⊙P與AD相切于點A時,OP=1,此時m=-1,⊙P與AD相切于點B時,OP=1,此時m=1,∴當,⊙P只與BC邊相切時;,(4)當⊙P只與BC邊相切時,如下圖,由題意可得OP=2,∴此時.綜上所述,點P的橫坐標m的取值范圍或或或.本題考查圓與直線的位置關系,加上動點問題,此題難度較大,解決此題的關鍵是能夠正確分類討論,并根據已知條件進行計算求解.三、解答題(共78分)19、(1);(2)①;②【分析】(1)畫出樹狀圖計算即可;(2)①三張卡片上正面的標記有三種可能,分別為“√,×,√”,然后計算即可;②正面標記為“√”的卡片,其反面標記情況有兩種可能,分別為“√”和“×”,計算即可;【詳解】(1)解:根據題意,可畫出如下樹形圖:從樹形圖可以看出,所有可能結果共9種,且每種結果出現的可能性相等,其中兩張卡片上標記都是“√”的結果有2種,∴(兩張都是“√”)(2)解:①∵三張卡片上正面的標記有三種可能,分別為“√,×,√”,∴隨機揭開其中一個蓋子,看到的標記是“√”的概率為.②∵正面標記為“√”的卡片,其反面標記情況有兩種可能,分別為“√”和“×”,∴猜對反面也是“√”的概率為.本題主要考查了概率的計算,準確理解題意是解題的關鍵.20、(1)該商城2、3月份的月平均增長率為25%;(2)商城4月份賣出125輛自行車【分析】(1)根據題意列方程求解即可.(2)三月份的銷量乘以(1+月平均增長率),即可求出四月份的銷量.【詳解】解:(1)設該商城2、3月份的月平均增長率為x,根據題意列方程:64(1+x)2=100,解得,x1=-225%(不合題意,舍去),x2=25%.答:該商城2、3月份的月平均增長率為25%.(2)四月份的銷量為:100(1+25%)=125(輛)答:商城4月份賣出125輛自行車本題考查了一元二次方程的實際應用,掌握解一元二次方程的方法是解題的關鍵.21、(1)tan∠DCE=;(2)=.【分析】(1)根據已知條件求出CD,再利用勾股定理求解出ED,即可得到結果;(2)過D作DG∥CF交AB于點G,根據平行線分線段成比例即可求得結果;【詳解】解:(1)∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,AC=13,cos∠ACB=,∴CD=5,由勾股定理得:AD=,∵E是AD的中點,∴ED=AD=6,∴tan∠DCE=;(2)過D作DG∥CF交AB于點G,如圖所示:∵BC=8,CD=5,∴BD=BC﹣CD=3,∵DG∥CF,∴,,∴AF=FG,設BG=3x,則AF=FG=5x,BF=FG+BG=8x∴.本題主要考查了解直角三角形的應用,結合勾股定理和平行線分線段成比例求解是解題的關鍵.22、(1)拋物線的表達式為,(或);(1);(3)拋物線上存在點E,使得△EFO∽△AMN,這樣的點共有1個,分別是(,)和(,).【分析】(1)由點O(0,0)與點A(4,0)的縱坐標相等,可知點O、A是拋物線上的一對對稱點,所以對稱軸為直線x=1,又因為最小值是-1,所以頂點為(1,-1),利用頂點式即可用待定系數法求解;(1)設拋物線對稱軸交軸于點D、N(,),先求出=45°,由ON∥PA,依據平行線的性質得到=45°,依據等腰直角三角形兩直角邊的關系可得到=,解出即可得到點N的坐標,再運用勾股定理求出ON的長度;(3)先運用勾股定理求出AM和OM,再用ON-OM得MN,運用相似三角形的性質得到EF:FO的值,設E(,),分點E在第一象限、第二或四象限討論,依據EF:FO=1:1列出關于m的方程解出即可.【詳解】解:(1)∵拋物線經過點O(0,0)與點A(4,0),∴對稱軸為直線x=1,又∵頂點為點P,且最小值為-1,,∴頂點P(1,-1),∴設拋物線的表達式為將O(0,0)坐標代入,解得∴拋物線的表達式為,即;(1)設拋物線對稱軸交軸于點D,∵頂點P坐標為(1,-1),∴點D坐標為(1,0)又∵A(4,0),∴△ADP是以為直角的等腰直角三角形,=45°又∵ON∥PA,∴=45°∴若設點N的坐標為(,)則=解得,∴點N的坐標為(,)∴(3)拋物線上存在一個點E,使得△EFO∽△AMN,理由如下:連接PO、AM,∵=45°,=90°,∴,又∵由點D坐標為(1,0),得OD=1,∴,又∵=90°,由A(4,0),D(1,0)得AD=1,∴,同理可得,∴,∴AM:MN=:=1:1∵△EFO∽△AMN∴EF:FO=AM:MN=1:1設點E的坐標為(,)(其中),①當點E在第一象限時,,解得,此時點E的坐標為(,),②當點E在第二象限或第四象限時,,解得,此時點E的坐標為(,)綜上所述,拋物線上存在一個點E,使得△EFO∽△AMN,這樣的點共有1個,分別是(,)和(,).本題是二次函數綜合題,考查了運用待定系數法求解析式,運用勾股定理求線段長度,二次函數中相似的存在性問題,解題的關鍵是用點的坐標求出線段長度,并根據線段之間的關系,建立方程解出得到點的坐標.23、小河的寬度是210米.【分析】先證明△ABD∽△ECD,然后利用相似比計算出AB即可得到小河的寬度.【詳解】∵,,∴,∴,∴,即,∴.答:小河的寬度是210米.本題考查了相似三角形的應用:利用相似測量河的寬度(測量距離).①測量原理:測量不能直接到達的兩點間的距
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2378-2026數字計量體系框架及應用指南
- GB/T 46897-2025光伏發(fā)電站應急管理規(guī)范
- 法律資格考試題目及答案
- 一建市政基坑案例題目及答案
- 法學類考試題目及答案
- 養(yǎng)老院老人緊急救援人員職業(yè)道德制度
- 養(yǎng)老院老人健康監(jiān)測人員表彰制度
- 養(yǎng)老院環(huán)境清潔制度
- 線上知識問答題目及答案
- 辦公室員工出差安全管理制度
- 2026年齊齊哈爾高等師范??茖W校單招職業(yè)技能測試題庫必考題
- 輸變電工程安全教育課件
- 物業(yè)項目綜合服務方案
- 2025-2026學年北京市西城區(qū)初二(上期)期末考試物理試卷(含答案)
- 高血壓病的中醫(yī)藥防治
- 2024年度初會職稱《初級會計實務》真題庫匯編(含答案)
- 產科品管圈成果匯報降低產后乳房脹痛發(fā)生率課件
- 綠植租賃合同
- 狼蒲松齡原文及翻譯
- 2023初會職稱《經濟法基礎》習題庫及答案
- 比亞迪Forklift軟件使用方法
評論
0/150
提交評論