2026屆廣東省廣州市越秀區(qū)育才實驗學校數(shù)學九年級第一學期期末監(jiān)測試題含解析_第1頁
2026屆廣東省廣州市越秀區(qū)育才實驗學校數(shù)學九年級第一學期期末監(jiān)測試題含解析_第2頁
2026屆廣東省廣州市越秀區(qū)育才實驗學校數(shù)學九年級第一學期期末監(jiān)測試題含解析_第3頁
2026屆廣東省廣州市越秀區(qū)育才實驗學校數(shù)學九年級第一學期期末監(jiān)測試題含解析_第4頁
2026屆廣東省廣州市越秀區(qū)育才實驗學校數(shù)學九年級第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆廣東省廣州市越秀區(qū)育才實驗學校數(shù)學九年級第一學期期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.在Rt△ABC中,∠C=90°,sinA=,BC=6,則AB=()A.4 B.6 C.8 D.102.如圖,中,點,分別是邊,上的點,,點是邊上的一點,連接交線段于點,且,,,則S四邊形BCED()A. B. C. D.3.將分別標有“走”“向”“偉”“大”“復”“興”漢字的小球裝在一個不透明的口袋中,這些球除漢字外完全相同,每次摸球前先攪勻,隨機摸出一球,不放回,再隨機摸出一球,兩次摸出的球上的漢字組成“復興”的概率是()A. B. C. D.4.下列說法正確的是()A.“經(jīng)過有交通信號的路口遇到紅燈”是必然事件B.已知某籃球運動員投籃投中的概率為0.6,則他投10次一定可投中6次C.投擲一枚硬幣正面朝上是隨機事件D.明天太陽從東方升起是隨機事件5.如圖,以AB為直徑,點O為圓心的半圓經(jīng)過點C,若AC=BC=,則圖中陰影部分的面積是()A. B. C. D.6.二次函數(shù)y=x2-2x+3的最小值是()A.-2B.2C.-1D.17.拋物線y=2x2,y=﹣2x2,y=2x2+1共有的性質是()A.開口向上 B.對稱軸都是y軸C.都有最高點 D.頂點都是原點8.如圖,矩形中,,,點為矩形內(nèi)一動點,且滿足,則線段的最小值為()A.5 B.1 C.2 D.39.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是(

)A. B. C. D.10.方程x(x﹣1)=0的根是()A.0 B.1 C.0或1 D.無解二、填空題(每小題3分,共24分)11.已知拋物線與x軸只有一個公共點,則m=___________.12.若,且,則=______.13.如圖,在△ABC中,D為AC邊上一點,且∠DBA=∠C,若AD=2cm,AB=4cm,那么CD的長等于________cm.14.一個口袋中裝有2個完全相同的小球,它們分別標有數(shù)字1,2,從口袋中隨機摸出一個小球記下數(shù)字后放回,搖勻后再隨機摸出一個小球,則兩次摸出小球的數(shù)字和為偶數(shù)的概率是.15.P是等邊△ABC內(nèi)部一點,∠APB、∠BPC、∠CPA的大小之比是5:6:7,將△ABP逆時針旋轉,使得AB與AC重合,則以PA、PB、PC的長為邊的三角形的三個角∠PCQ:∠QPC:∠PQC=________.16.若方程x2+2x-11=0的兩根分別為m、n,則mn(m+n)=______.17.如圖,用一段長為30米的籬笆圍成一個一邊靠墻(墻的長度不限)的矩形菜園ABCD,設AB的長為x米,則菜園的面積y(平方米)與x(米)的函數(shù)表達式為________.(不要求寫出自變量x的取值范圍)18.將含有30°角的直角三角板OAB如圖放置在平面直角坐標系中,OB在x軸上,若OA=2,將三角板繞原點O順時針旋轉75°,則點A的對應點A′的坐標為___________.三、解答題(共66分)19.(10分)如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.(1)求證:PE是⊙O的切線;(2)求證:DE平分∠BEP;(3)若⊙O的半徑為10,CF=2EF,求BE的長.20.(6分)已知在△ABC中,∠A=∠B=30°.(1)尺規(guī)作圖:在線段AB上找一點O,以O為圓心作圓,使⊙O經(jīng)過A,C兩點;(2)在(1)中所作的圖中,求證:BC是⊙O的切線.21.(6分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,點C在OP上,滿足∠CBP=∠ADB.(1)求證:BC是⊙O的切線;(2)若OA=2,AB=1,求線段BP的長.22.(8分)如圖,以40m/s的速度將小球沿與地面30°角的方向擊出時,小球的飛行路線是一段拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間的函數(shù)關系式為h=20t-(t≥0).回答問題:(1)小球的飛行高度能否達到19.5m;(2)小球從最高點到落地需要多少時間?23.(8分)已知二次函數(shù).(1)當時,求函數(shù)圖象與軸的交點坐標;(2)若函數(shù)圖象的對稱軸與原點的距離為2,求的值.24.(8分)閱讀以下材料,并按要求完成相應的任務.“圓材埋壁”是我國古代數(shù)學著作《九章算術》中的一個問題:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?用現(xiàn)在的數(shù)學語言表達是:如圖,為的直徑,弦,垂足為,寸,尺,其中1尺寸,求出直徑的長.解題過程如下:連接,設寸,則寸.∵尺,∴寸.在中,,即,解得,∴寸.任務:(1)上述解題過程運用了定理和定理.(2)若原題改為已知寸,尺,請根據(jù)上述解題思路,求直徑的長.(3)若繼續(xù)往下鋸,當鋸到時,弦所對圓周角的度數(shù)為.25.(10分)解方程:x2﹣2x﹣2=1.26.(10分)如圖,在Rt△ABC中,∠C=90°,點O是斜邊AB上一定點,到點O的距離等于OB的所有點組成圖形W,圖形W與AB,BC分別交于點D,E,連接AE,DE,∠AED=∠B.(1)判斷圖形W與AE所在直線的公共點個數(shù),并證明.(2)若,,求OB.

參考答案一、選擇題(每小題3分,共30分)1、D【詳解】解:在Rt△ABC中,∠C=90°,sinA==,BC=6∴AB==10,故選D.考點:解直角三角形;2、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形對應成比例可得,得到HC=5,再根據(jù)相似三角形的面積比等于相似比的平方可得,S△ABC=40.5,再減去△ADE的面積即可得到四邊形BCED的面積.【詳解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四邊形BCED=S△ABC-S△ADE=40.5-18=22.5故答案選:B.本題考查相似三角形的性質和判定.3、B【分析】根據(jù)題意列表得出所有等情況數(shù)和兩次摸出的球上的漢字是“復”“興”的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有30種等情況數(shù),其中兩次摸出的球上的漢字是“復”“興”的有2種,則隨機摸出一球,兩次摸出的球上的漢字組成“復興”的概率是;故選:.此題考查了樹狀圖法或列表法求概率.樹狀圖法適合兩步或兩步以上完成的事件;列表法適合兩步完成的事件,解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.4、C【解析】試題解析:A.“經(jīng)過有交通信號的路口遇到紅燈”是隨機事件,說法錯誤.B.已知某籃球運動員投籃投中的概率為0.6,則他投10次一定可投中6次,說法錯誤.C.投擲一枚硬幣正面朝上是隨機事件,說法正確.D.明天太陽從東方升起是必然事件.說法錯誤.故選C.5、A【分析】先利用圓周角定理得到∠ACB=90°,則可判斷△ACB為等腰直角三角形,接著判斷△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根據(jù)扇形的面積公式計算圖中陰影部分的面積.【詳解】∵AB為直徑,∴∠ACB=90°,∵AC=BC=,∴△ACB為等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S陰影部分=S扇形AOC=.故選A.本題考查了扇形面積的計算:圓面積公式:S=πr2,(2)扇形:由組成圓心角的兩條半徑和圓心角所對的弧所圍成的圖形叫做扇形.求陰影面積常用的方法:①直接用公式法;②和差法;③割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.6、B【解析】試題解析:因為原式=x1-1x+1+1=(x-1)11,所以原式有最小值,最小值是1.故選B.7、B【詳解】(1)y=2x2開口向上,對稱軸為y軸,有最低點,頂點為原點;(2)y=﹣2x2開口向下,對稱軸為y軸,有最高點,頂點為原點;(3)y=2x2+1開口向上,對稱軸為y軸,有最低點,頂點為(0,1).故選B.8、B【分析】通過矩形的性質和等角的條件可得∠BPC=90°,所以P點應該在以BC為直徑的圓上,即OP=4,根據(jù)兩邊之差小于第三邊及三點共線問題解決.【詳解】如圖,∵四邊形ABCD為矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴點P在以BC為直徑的圓⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴當P,D,O三點共線時,PD最小,∴PD的最小值為OD-OP=5-4=1.故選:B.本題考查矩形的性質,勾股定理,線段最小值問題及圓的性質,分析出P點的運動軌跡是解答此題的關鍵.9、A【分析】畫出圖像,勾股定理求出AB的長,表示cosB即可解題.【詳解】解:如下圖,∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=5(勾股定理),∴cosB==,故選A.本題考查了三角函數(shù)的求值,屬于簡單題,熟悉余弦函數(shù)的表示是解題關鍵.10、C【分析】解一元二次方程時,需要把二次方程化為兩個一元一次方程,此題可化為:或,解此兩個一次方程即可.【詳解】,或,,.

故選.此題雖不難,但是告訴了學生求解的一個方法,高次的要化為低次的,多元得要化為一元的.二、填空題(每小題3分,共24分)11、【解析】試題分析:根據(jù)拋物線解析式可知其對稱軸為x=,根據(jù)其與x軸只有一個交點,可知其頂點在x軸上,因此可知x=時,y=0,代入可求得m=.點睛:此題主要考查了二次函數(shù)的圖像與性質,解題關鍵是明確與x軸只有一個交點的位置是拋物線的頂點在x軸上,因此可求出對稱軸代入即可.12、12【分析】設,則a=2k,b=3k,c=4k,由求出k值,即可求出c的值.【詳解】解:設,則a=2k,b=3k,c=4k,∵a+b-c=3,∴2k+3k-4k=3,∴k=3,∴c=4k=12.故答案為12.此題主要考查了比例的性質,利用等比性質是解題關鍵.13、1【解析】由條件可證得△ABC∽△ADB,可得到=,從而可求得AC的長,最后計算CD的長.【詳解】∵∠DBA=∠C,∠A是公共角,∴△ABC∽△ADB,∴=,即=,解得:AC=8,∴CD=8﹣2=1.故答案為:1.本題考查了相似三角形的判定和性質,掌握利用兩組角對應相等可判定兩個三角形相似是解題的關鍵.14、.【解析】試題分析:如圖所示,∵共有4種結果,兩次摸出小球的數(shù)字和為偶數(shù)的有2次,∴兩次摸出小球的數(shù)字和為偶數(shù)的概率==.故答案為.考點:列表法與樹狀圖法.15、3:4:2【分析】將△APB繞A點逆時針旋轉60得△AQC,顯然有△AQC≌△APB,連PQ,可得△AQP是等邊三角形,△QCP的三邊長分別為PA,PB,PC,由∠APB+∠BPC+∠CPA=360,∠APB:∠BPC:∠CPA=5:6:7,可得∠APB=100,∠BPC=120,∠CPA=140,可得答案.【詳解】解:如圖,將△APB繞A點逆時針旋轉60得△AQC,顯然有△AQC≌△APB,連PQ,AQ=AP,∠QAP=60,△AQP是等邊三角形,PQ=AP,QC=PB,△QCP的三邊長分別為PA,PB,PC,∠APB+∠BPC+∠CPA=360,∠APB:∠BPC:∠CPA=5:6:7,∠APB=100,∠BPC=120,∠CPA=140,∠PQC=∠AQC-∠AQP=∠APB-∠AQP=100-60=40,∠QPC=∠APC-∠APQ=140-60=80,∠PCQ=180-(40+80)=60,∠PCQ:∠QPC:∠PQC=3:4:2,故答案為:3:4:2.本題主要考查旋轉的性質及等邊三角形的性質,綜合性大,注意運算的準確性.16、22【分析】

【詳解】∵方程x2+2x-11=0的兩根分別為m、n,∴m+n=-2,mn=-11,∴mn(m+n)=(-11)×(-2)=22.故答案是:2217、y=-x2+15x【分析】由AB邊長為x米,根據(jù)已知可以推出BC=(30-x),然后根據(jù)矩形的面積公式即可求出函數(shù)關系式.【詳解】∵AB邊長為x米,而菜園ABCD是矩形菜園,∴BC=(30-x),菜園的面積=AB×BC=(30-x)?x,則菜園的面積y(單位:米2)與x(單位:米)的函數(shù)關系式為:y=-x2+15x,故答案為y=-x2+15x.本題考查了二次函數(shù)的應用,正確分析,找準各量間的數(shù)量關系列出函數(shù)關系式是解題的關鍵.18、(,)【解析】過A′作A′C⊥x軸于C,根據(jù)旋轉得出∠AOA′=75°,OA=OA′=2,求出∠A′OC=45°,推出OC=A′C,解直角三角形求出OC和A′C,即可得出答案.【詳解】如圖,過A′作A′C⊥x軸于C,∵將三角板繞原點O順時針旋轉75°,∴∠AOA′=75°,OA=OA′=2,∵∠AOB=30°,∴∠A′OC=45°,∴OC=A′C=OA′sin45°=2×=,∴A′的坐標為(,-).故答案為:(,).本題考查的知識點是坐標與圖形變化-旋轉,解題的關鍵是熟練的掌握坐標與圖形變化-旋轉.三、解答題(共66分)19、(1)見解析;(2)見解析;(3)BE=1.【分析】(1)如圖,連接OE.欲證明PE是⊙O的切線,只需推知OE⊥PE即可;(2)由圓周角定理得到,根據(jù)“同角的余角相等”推知,結合已知條件證得結論;(3)設,則,由勾股定理可求EF的長,即可求BE的長.【詳解】(1)如圖,連接OE.∵CD是圓O的直徑,∴.∵,∴.又∵,即,∴,∴,即,∴,又∵點E在圓上,∴PE是⊙O的切線;(2)∵AB、CD為⊙O的直徑,∴,∴(同角的余角相等).又∵,∴,即ED平分∠BEP;(3)設,則,∵⊙O的半徑為10,∴,在Rt△OEF中,,即,解得,∴,∴.本題考查了圓和三角形的幾何問題,掌握切線的性質、圓周角定理和勾股定理是解題的關鍵.20、(1)見解析;(2)見解析【分析】(1)作AC的垂直平分線MN交AB于點O,以O為圓心,OA為半徑作⊙O即可.(2)根據(jù)題目中給的已知條件結合題(1)所作的圖綜合應用證明∠OCB=90°即可解決問題.【詳解】(1)解:如圖,⊙O即為所求.(2)證明:連接OC.∵∠A=∠B=30°,∴∠ACB=180°﹣30°﹣30°=120°,∵MN垂直平分相對AC,∴OA=OC,∴∠A=∠ACO=30°,∴∠OCB=90°,∴OC⊥BC,∴BC是⊙O的切線.本題主要考查的是尺規(guī)作圖的方法以及圓的綜合應用,注意在尺規(guī)作圖的時候需要保留作圖痕跡.21、(1)見解析;(2)BP=1.【分析】(1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)等腰三角形的性質和已知條件證出∠OBC=90°,即可得出結論;(2)證明△AOP∽△ABD,然后利用相似三角形的對應邊成比例求BP的長.【詳解】(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切線;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴=,即=,解得:BP=1.本題考查了切線的判定、圓周角定理、等腰三角形的性質、相似三角形的判定與性質等知識;熟練掌握圓周角定理和切線的判定是解題的關鍵.22、(1)19.5m;(2)2s【分析】(1)根據(jù)拋物線解析式,先求出拋物線的定點,判斷小球最高飛行高度,從而判斷能否達到19.5m;(2)根據(jù)定點坐標知道,小球飛從地面飛行至最高點需要2s,根據(jù)二次函數(shù)的對稱性,可知從最高落在地面,也需要2s.【詳解】(1)h=20t-由二次函數(shù)可知:拋物線開口向下,且頂點坐標為(2,20),可知小球的飛行高度為h=20m>19.5m所以小球的飛行高度能否達到19.5m;(2)根據(jù)拋物線的對稱性可知,小球從最高點落到地面需要的時間與小球從地面上到最高點的時間相等.因為由二次函數(shù)的頂點坐標可知當t=2s時小球達到最高點,所以小球從最高點到落地需要2s.本題考查二次函數(shù)的實際運用,解題關鍵是將二次函數(shù)轉化為頂點式,得出頂點坐標,然后分析求解.23、(1)和;(2)或-1.【分析】(1)把k=2代入,得.再令y=0,求出x的值,即可得出此函數(shù)圖象與x軸的交點坐標;(2)函數(shù)圖象的對稱軸與原點的距離為2,列出方程求解即可.【詳解】(1)∵,∴,令,則,解得,∴函數(shù)圖象與軸的交點坐標為和.(2)∵函數(shù)圖象的對稱軸與原點的距離為2,∴,解得或-1.本題考查了拋物線與x軸的交點,二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關系:△=b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.24、(1)垂徑,勾股;(2)26寸;(3)或【分析】(1)由解題過程可知根據(jù)垂徑定理求出AE的長,在Rt△OAE中根據(jù)勾股定理求出r的值,即可得到答案.

(2)連接OA,設OA=r寸,則OE=DE-r=25-r,再根據(jù)垂徑定理求出AE的長,在Rt△OAE中根據(jù)勾股定理求出r的值,進而得出結論.

(3)當AE=OE時,△AEO是等腰直角三角形,則∠AOE=45°,∠AOB=90°,所以由圓周角定理推知弦AB所對圓周角的度數(shù)為45°或135°.【詳解】解:(1)根據(jù)題意知,上述解題過程運用了垂徑定理和勾股定理.

故答案是:垂徑;勾股;

(2)連接OA,設OA=r寸,則OE=DE-r

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論