版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省六安市舒城縣2026屆九年級數(shù)學第一學期期末教學質量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,將Rt△ABC繞直角頂點C順時針旋轉90°得到△DEC,連接AD,若∠BAC=26°,則∠ADE的度數(shù)為()A.13° B.19° C.26° D.29°2.下列哪個方程是一元二次方程()A.2x+y=1 B.x2+1=2xy C.x2+=3 D.x2=2x﹣33.下列圖形,是軸對稱圖形,但不是中心對稱圖形的是()A. B. C. D.4.在一個有10萬人的小鎮(zhèn),隨機調查了1000人,其中有120人周六早上觀看中央電視臺的“朝聞天下”節(jié)目,那么在該鎮(zhèn)隨便問一個人,他在周六早上觀看中央電視臺的“朝聞天下”節(jié)目的概率大約是()A. B. C. D.5.如圖所示,在中,,若,,則的值為()A. B. C. D.6.拋物線經(jīng)過點與,若,則的最小值為()A.2 B. C.4 D.7.如圖,菱形的邊長是,動點同時從點出發(fā),以的速度分別沿運動,設運動時間為,四邊形的面積為,則與的函數(shù)關系圖象大致為()A. B.C. D.8.如圖,是的直徑,,是圓周上的點,且,則圖中陰影部分的面積為()A. B. C. D.9.三角形的一條中位線將這個三角形分成的一個小三角形與原三角形的面積之比等于()A.1: B.1:2 C.1:4 D.1:1.610.若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(﹣1,0)和(3,0),則方程ax2+bx+c=0的解為()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3C.x1=﹣1,x2=3 D.x1=﹣3,x2=111.用一個平面去截一個圓錐,截面的形狀不可能是()A.圓 B.矩形 C.橢圓 D.三角形12.由四個相同的小正方體搭建了一個積木,它的三視圖如圖所示,則這個積木可能是()A. B. C. D.二、填空題(每題4分,共24分)13.若3a=2b,則a:b=________.14.如圖,在中,,按以下步驟作圖:在上分別截取使分別以為圓心,以大于的長為半徑作弧,兩弧在內交于點③作射線交于點,則_______.15.年月日我國自主研發(fā)的大型飛機成功首飛,如圖給出了一種機翼的示意圖,其中,,則的長為_______.16.如圖,分別以四邊形ABCD的各頂點為圓心,以1長為半徑畫弧所截的陰影部分的面積的和是________.17.如果反比例函數(shù)的圖象經(jīng)過點,則該反比例函數(shù)的解析式為____________18.如圖,已知在矩形ABCD中,點E在邊BC上,BE=2CE,將矩形沿著過點E的直線翻折后,點C,D分別落在邊BC下方的點C′,D′處,且點C′,D′,B在同一條直線上,折痕與邊AD交于點F,D′F與BE交于點G.設AB=t,那么△EFG的周長為___(用含t的代數(shù)式表示).三、解答題(共78分)19.(8分)解方程:(1)3(2x+1)2=108(2)3x(x-1)=2-2x(3)x2-6x+9=(5-2x)2(4)x(2x-4)=5-8x20.(8分)如圖,是的直徑,直線與相切于點.過點作的垂線,垂足為,線段與相交于點.(1)求證:是的平分線;(2)若,求的長.21.(8分)已知拋物線(是常數(shù))經(jīng)過點.(1)求該拋物線的解析式和頂點坐標.(2)若點在拋物線上,且點關于原點的對稱點為.①當點落在該拋物線上時,求的值;②當點落在第二象限內,取得最小值時,求的值.22.(10分)如圖,菱形EFGH的三個頂點E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.(1)求證:∠HEA=∠CGF;(2)當AH=DG時,求證:菱形EFGH為正方形.23.(10分)如圖,已知二次函數(shù)的頂點為(2,),且圖象經(jīng)過A(0,3),圖象與x軸交于B、C兩點.(1)求該函數(shù)的解析式;(2)連結AB、AC,求△ABC面積.24.(10分)甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:根據(jù)以上信息,整理分析數(shù)據(jù)如下:平均成績/環(huán)中位數(shù)/環(huán)眾數(shù)/環(huán)方差甲乙(1)寫出表格中的值:(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?25.(12分)如圖,在鈍角中,點為上的一個動點,連接,將射線繞點逆時針旋轉,交線段于點.已知∠C=30°,CA=2cm,BC=7cm,設B,P兩點間的距離為xcm,A,D兩點間的距離ycm.小牧根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.下面是小牧探究的過程,請補充完整:(1)根據(jù)圖形.可以判斷此函數(shù)自變量X的取值范圍是;(2)通過取點、畫圖、測量,得到了與的幾組值,如下表:0.511.021.913.4734.164.473.973.222.421.66a2.022.50通過測量??梢缘玫絘的值為;(3)在平而直角坐標系xOy中.描出上表中以各對對應值為坐標的點,畫出該函數(shù)的圖象;(4)結合畫出的函數(shù)圖象,解決問題:當AD=3.5cm時,BP的長度約為cm.26.2019年11月5日,第二屆中國國際進口博覽會(The2ndChinaInternationallmportExpo)在上海國家會展中心開幕.本次進博會將共建開放合作、創(chuàng)新共享的世界經(jīng)濟,見證海納百川的中國胸襟,詮釋兼濟天下的責任擔當.小滕、小劉兩人想到四個國家館參觀:.中國館;.俄羅斯館;.法國館;.沙特阿拉伯館.他們各自在這四個國家館中任意選擇一個參觀,每個國家館被選擇的可能性相同.(1)求小滕選擇.中國館的概率;(2)用畫樹狀圖或列表的方法,求小滕和小劉恰好選擇同一國家館的概率.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)旋轉的性質可得AC=CD,∠CDE=∠BAC,再判斷出△ACD是等腰直角三角形,然后根據(jù)等腰直角三角形的性質求出∠CDA=45°,根據(jù)∠ADE=∠CDA﹣∠CDE,即可求解.【詳解】∵Rt△ABC繞其直角頂點C按順時針方向旋轉90°后得到Rt△DEC,∴AC=CD,∠CDE=∠BAC=26°,∴△ACD是等腰直角三角形,∴∠CDA=45°,∴∠ADE=∠CDA﹣∠CDE=45°﹣26°=19°.故選:B.本題主要考查旋轉的性質和等腰直角三角形的判定和性質定理,掌握等腰直角三角形的性質,是解題的關鍵,2、D【分析】方程的兩邊都是整式,只含有一個未知數(shù),并且整理后未知數(shù)的最高次數(shù)都是2,像這樣的方程叫做一元二次方程,根據(jù)定義判斷即可.【詳解】A.2x+y=1是二元一次方程,故不正確;B.x2+1=2xy是二元二次方程,故不正確;C.x2+=3是分式方程,故不正確;D.x2=2x-3是一元二次方程,故正確;故選:D3、A【解析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,符合題意;B.不是軸對稱圖形,是中心對稱圖形,不符合題意;C.是軸對稱圖形,是中心對稱圖形,不符合題意;D.是軸對稱圖形,是中心對稱圖形,不符合題意;故選:A.本題考查的知識點是識別軸對稱圖形與中心對稱圖形,需要注意的是軸對稱圖形是關于對稱軸成軸對稱;中心對稱圖形是關于某個點成中心對稱.4、C【解析】試題解析:由題意知:1000人中有120人看中央電視臺的早間新聞,∴在該鎮(zhèn)隨便問一人,他看早間新聞的概率大約是.故選C.【點睛】本題考查概率公式和用樣本估計總體,概率計算一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.5、B【分析】由DE∥BC,可得△ADE∽△ABC,推出,即可得出結論.【詳解】∵AD=3,DB=4,∴AB=3+4=1.∵DE∥BC,∴△ADE∽△ABC,∴.故選:B.本題考查了相似三角形的判定和性質,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.6、D【分析】將點A、B的坐標代入解析式得到y(tǒng)1與y2,再根據(jù),即可得到答案.【詳解】將點A、B的坐標分別代入,得,,∵,∴,得:b,∴b的最小值為-4,故選:D.此題考查二次函數(shù)點與解析式的關系,解不等式求取值,正確理解題意是解題的關鍵.7、C【分析】根據(jù)題意可以求出各段對應的函數(shù)解析式,再根據(jù)函數(shù)解析式即可判斷哪個選項是符合題意的,本題得以解決.【詳解】解:∵菱形ABCD的邊長為4cm,∠A=60°,動點P,Q同時從點A出發(fā),都以1cms的速度分別沿A→B→C和A→D→C的路徑向點C運動,
∴△ABD是等邊三角形,
∴當0<x≤4時,
y=×4×4×sin60°?x?sin60°x=4?x2=x2+4;
當4<x≤8時,
y=×4×4×sin60°?×(8?x)×(8?x)×sin60°=?x2+4x?12=?(x?8)2+4;∴選項C中函數(shù)圖像符合題意,故選:C.本題考查動點問題的函數(shù)圖象,解答本題的關鍵是明確題意,求出各段對應的函數(shù)解析式,利用數(shù)形結合的思想解答.8、D【分析】連接OC,過點C作CE⊥OB于點E,根據(jù)圓周角定理得出,則有是等邊三角形,然后利用求解即可.【詳解】連接OC,過點C作CE⊥OB于點E∴是等邊三角形故選:D.本題主要考查圓周角定理及扇形的面積公式,掌握圓周角定理及扇形的面積公式是解題的關鍵.9、C【分析】中位線將這個三角形分成的一個小三角形與原三角形相似,根據(jù)中位線定理,可得兩三角形的相似比,進而求得面積比.【詳解】根據(jù)三角形中位線性質可得,小三角形與原三角形相似比為1:2,則其面積比為:1:4,故選C.本題考查了三角形中位線的性質,比較簡單,關鍵是知道面積比等于相似比的平方.10、C【分析】利用拋物線與x軸的交點問題確定方程ax2+bx+c=0的解.【詳解】解:∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(﹣1,0)和(1,0),∴方程ax2+bx+c=0的解為x1=﹣1,x2=1.故選:C.本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數(shù)的性質.11、B【分析】利用圓錐的形狀特點解答即可.【詳解】解:平行于圓錐的底面的截面是圓,故A可能;截面不可能是矩形,故B符合題意;斜截且與底面不相交的截面是橢圓,故C可能;過圓錐的頂點的截面是三角形,故D可能.故答案為B.本題主要考查了截一個幾何體所得的截面的形狀,解答本題的關鍵在于明確截面的形狀既與被截的幾何體有關,還與截面的角度和方向有關.12、A【解析】分析:從主視圖上可以看出上下層數(shù),從俯視圖上可以看出底層有多少小正方體,從左視圖上可以看出前后層數(shù),綜合三視圖可得到答案.解答:解:從主視圖上可以看出左面有兩層,右面有一層;從左視圖上看分前后兩層,后面一層上下兩層,前面只有一層,從俯視圖上看,底面有3個小正方體,因此共有4個小正方體組成,故選A.二、填空題(每題4分,共24分)13、2:3【解析】試題分析:根據(jù)比例的基本性質:兩內項之積等于兩外項之積,可知a:b=2:3考點:比例的意義和基本性質點評:比例的基本性質是解題的關鍵14、【分析】由已知可求BC=6,作,由作圖知平分,依據(jù)知,再證得可知BE=2,設,則,在中得,解之可得答案.【詳解】解:如圖所示,過點作于點,由作圖知平分,,,,,,,∴,∵在中,,,設,則在中∴,解得:,即,故選:.本題綜合考查了角平分線的尺規(guī)作圖及角平分線的性質、勾股定理等知識,利用勾股定理構建方程求解是解題關鍵.15、【分析】延長交于點,設于點,通過解直角三角形可求出、的長度,再利用即可求出結論.【詳解】延長交于點,設于點,如圖所示,在中,,,.在中,,,,,,,,故答案為:.本題考查了解直角三角形的應用.通過解直角三角形求出、的長度是解題的關鍵.16、【分析】根據(jù)四邊形內角和定理得圖中四個扇形正好構成一個半徑為1的圓,因此其面積之和就是圓的面積.【詳解】解:∵圖中四個扇形的圓心角的度數(shù)之和為四邊形的四個內角的和,且四邊形內角和為360°,∴圖中四個扇形構成了半徑為1的圓,∴其面積為:πr2=π×12=π.故答案為:π.此題主要考查了四邊形內角和定理,扇形的面積計算,得出圖中陰影部分面積之和是半徑為1的圓的面積是解題的關鍵.17、【分析】根據(jù)題意把點代入,反比例函數(shù)的解析式即可求出k值進而得出答案.【詳解】解:設反比例函數(shù)的解析式為:,把點代入得,所以該反比例函數(shù)的解析式為:.故答案為:.本題考查反比例函數(shù)的解析式,根據(jù)題意將點代入并求出k值是解題的關鍵.18、2t【分析】根據(jù)翻折的性質,可得CE=,再根據(jù)直角三角形30度所對的直角邊等于斜邊的一半判斷出,然后求出,根據(jù)對頂角相等可得,根據(jù)平行線的性質得到,再求出,然后判斷出是等邊三角形,根據(jù)等邊三角形的性質表示出EF,即可解題.【詳解】由翻折的性質得,CE=是等邊三角形,的周長=故答案為:.本題考查折疊問題、等邊三角形的判定與性質、含30度的直角三角形、平行線的性質等知識,是重要考點,難度較易,掌握相關知識是解題關鍵.三、解答題(共78分)19、(1)x1=,x2=;(2)x1=1,x2=;(3)x1=,x2=2;(4)x1=,x2=【分析】(1)兩邊同時除以3,再用直接開平方法解得;(2)移項,方程左邊可以提取公因式(x-1),利用因式分解法求解得;(3)先把方程化為兩個完全平式的形式,再用因式分解法求出x的值即可.(4)方程整理為一般形式,計算出根的判別式的值大于0,代入求根公式即可求出解;【詳解】解:(1)兩邊同時除以3得:(2x+1)2=36,開平方得:2x+1=±6,x1=,x2=;(2)移項得,3x(x-1)-2+2x=0,
因式分解得,(x-1)(3x+2)=0,
解得,x1=1,x2=;(3)因式分解得:(x-3)2=(5-2x)2,
移項,得(x-3)2-(5-2x)2=0,
因式分解得(x-3-5+2x)(x-3+5-2x)=0,
(3x-8)(-x+2)=0,
解得x1=,x2=2;(4)x(2x-4)=5-8x,
方程整理得:2x2+4x-5=0,
這里a=2,b=4,c=-5,
∵△=16+40=56,∴x=,則x1=,x2=.本題考查的是解一元二次方程,熟知用直接開平方法、公式法及因式分解法解一元二次方程是解答此題的關鍵.20、(1)見解析;(2)【分析】(1)連接OC,可證得OC∥AD,根據(jù)平行線性質及等腰三角形性質,可得∠DAC=∠CAO,即得AC平分∠DAB;(2)連接,連接交于點,通過構造直角三角形,利用勾股定理和相似三角形求得,再求得,即可求得答案.【詳解】(1)證明:如圖,連接,∵與相切于點,∴,∵,∴,∴,∴,∴,∵,∴,∴,∴是的平分線;(2)解:如圖,連接,連接交于點,∵是的直徑,∴,∵,∴,∵,∴,∴,為線段中點,∵,,∴,∴,即:,∴,∵,∴,∴,∵為直徑中點,為線段中點,∴.本題考查了切線的性質、角平分線的性質、相似三角形的判定、勾股定理、三角形中位線的性質等多方面的知識,是一道綜合題型,考查學生各知識點的綜合運用能力.21、(1),頂點的坐標為(1,-4);(2)①,;②.【分析】(1)把坐標代入求出解析式,再化為頂點式即可求解;(2)①由對稱性可表示出P’的坐標,再由P和P’都在拋物線上,可得到m的方程,即可求出m的值;②由點P’在第二象限,可求出t的取值,利用兩點間的距離公式可用t表示,再由帶你P’在拋物線上,可消去m,整理得到關于t的二次函數(shù),利用二次函數(shù)的性質即可求出最小值時t的值,則可求出m的值.【詳解】(1)∵拋物線經(jīng)過點,∴,解得,∴拋物線的解析式為.∵,∴頂點的坐標為.(2)①由點在拋物線上,有.∵關于原點的對稱點為,有.∴,即,∴,解得,.②由題意知在第二象限,∴,,即,.則在第四象限.∵拋物線的頂點坐標為,∴.過點作軸,為垂足,則.∵,,∴,.當點和不重合時,在中,.當點和重合時,,,符合上式.∴,即.記,則,∴當時,取得最小值.把代入,得,解得,,由,可知不符合題意,∴.此題主要考查二次函數(shù)綜合,解題的關鍵是熟知二次函數(shù)的性質.22、(1)證明見解析;(2)證明見解析.【分析】(1)連接GE,根據(jù)正方形的性質和平行線的性質得到∠AEG=∠CGE,根據(jù)菱形的性質和平行線的性質得到∠HEG=∠FGE,解答即可;(2)證明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,證明∠GHE=90°,根據(jù)正方形的判定定理證明.【詳解】解:(1)連接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四邊形ABCD是正方形,∴∠D=∠A=90°,∵四邊形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH為正方形.本題考查的是正方形的性質、菱形的性質、全等三角形的判定和性質,正確作出輔助線、靈活運用相關的性質定理和判定定理是解題的關鍵.23、(1);(2).【分析】(1)設該二次函數(shù)的解析式為,因為頂點(2,-1),可以求出h,k,將A(0,3)代入可以求出a,即可得出二次函數(shù)解析式.(2)由(1)求出函數(shù)解析式,令y等于0可以求出函數(shù)圖像與x軸的兩個交點為B,C兩點,然后利用面積公式,即可求出三角形ABC的面積.【詳解】(1)設該二次函數(shù)的解析式為∵頂點為(2,)∴又∵圖象經(jīng)過A(0,3)∴即∴該拋物線的解析式為(2)當時,,解得,∴C(3,0)B(1,0)得∴.熟練掌握待定系數(shù)法求二次函數(shù)解析式和三角形的面積公式是本題的解題關鍵.24、(1),,,;(2)選擇乙,理由見解析【分析】(1)利用平均數(shù)的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計算即可;(2)結合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點進行分析.【詳解】解:(1)甲的平均成績(環(huán)),∵乙射擊的成績從小到大從新排列為:3、4、6、7、7、8、8、8、9、1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026浙江紹興市嵊州市水務投資發(fā)展集團有限公司招聘8人備考題庫及參考答案詳解一套
- 2026重慶九龍坡區(qū)人和小學教師招聘1人備考題庫及答案詳解(奪冠系列)
- 北京工業(yè)發(fā)展投資管理有限公司2026屆校招備考題庫及1套參考答案詳解
- 2025山西空港新城太平中學就業(yè)見習招聘2人備考題庫附答案詳解
- 2025海南省海口技師學院招聘事業(yè)編制人員10人備考題庫(第1號)及答案詳解(考點梳理)
- 2025廣東江門開平市公用事業(yè)集團有限公司招聘4人備考題庫及一套完整答案詳解
- 2025云南昭通市文聯(lián)招聘城鎮(zhèn)公益性崗位工作人員1人備考題庫帶答案詳解
- 2025安徽黃山市祁門縣國有投資集團有限公司招聘3人備考題庫帶答案詳解
- 企業(yè)人力資源財務管理制度匯編
- 美妝店活動方案
- 乙肝疫苗接種培訓
- 心衰患者的用藥與護理
- 食品代加工業(yè)務合同樣本(版)
- 車間管理人員績效考核方案
- 安全生產(chǎn)應急平臺體系及專業(yè)應急救援隊伍建設項目可行性研究報告
- 浙江省杭州市北斗聯(lián)盟2024-2025學年高二上學期期中聯(lián)考地理試題 含解析
- 醫(yī)用化學知到智慧樹章節(jié)測試課后答案2024年秋山東第一醫(yī)科大學
- 中國傳統(tǒng)美食餃子歷史起源民俗象征意義介紹課件
- 醫(yī)療器械樣品檢驗管理制度
- 更換法人三方免責協(xié)議書范文
- 中建“大商務”管理實施方案
評論
0/150
提交評論