2024-2025學年廣東省韶關市仁化縣中考數(shù)學押題卷含解析_第1頁
2024-2025學年廣東省韶關市仁化縣中考數(shù)學押題卷含解析_第2頁
2024-2025學年廣東省韶關市仁化縣中考數(shù)學押題卷含解析_第3頁
2024-2025學年廣東省韶關市仁化縣中考數(shù)學押題卷含解析_第4頁
2024-2025學年廣東省韶關市仁化縣中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年廣東省韶關市仁化縣中考數(shù)學押題卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.實數(shù)﹣5.22的絕對值是()A.5.22 B.﹣5.22 C.±5.22 D.2.將(x+3)2﹣(x﹣1)2分解因式的結果是()A.4(2x+2) B.8x+8 C.8(x+1) D.4(x+1)3.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個 B.3個 C.4個 D.5個4.某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=85.如圖,四個有理數(shù)在數(shù)軸上的對應點M,P,N,Q,若點M,N表示的有理數(shù)互為相反數(shù),則圖中表示絕對值最小的數(shù)的點是()A.點M B.點N C.點P D.點Q6.如圖,小明為了測量河寬AB,先在BA延長線上取一點D,再在同岸取一點C,測得∠CAD=60°,∠BCA=30°,AC=15m,那么河AB寬為()A.15m B.m C.m D.m7.2018年春運,全國旅客發(fā)送量達29.8億人次,用科學記數(shù)法表示29.8億,正確的是()A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×10108.如圖,二次函數(shù)y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=1,且OA=OC.則下列結論:①abc>0;②9a+3b+c>0;③c>﹣1;④關于x的方程ax1+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結論有()A.1個 B.3個 C.4個 D.5個9.如圖,平行四邊形ABCD中,E,F(xiàn)分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.10.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在長方形ABCD中,AF⊥BD,垂足為E,AF交BC于點F,連接DF.圖中有全等三角形_____對,有面積相等但不全等的三角形_____對.12.如圖,若正五邊形和正六邊形有一邊重合,則∠BAC=_____.13.已知△ABC中,AB=6,AC=BC=5,將△ABC折疊,使點A落在BC邊上的點D處,折痕為EF(點E.F分別在邊AB、AC上).當以B.E.D為頂點的三角形與△DEF相似時,BE的長為_____.14.我們定義:關于x的函數(shù)y=ax2+bx與y=bx2+ax(其中a≠b)叫做互為交換函數(shù).如y=3x2+4x與y=4x2+3x是互為交換函數(shù).如果函數(shù)y=2x2+bx與它的交換函數(shù)圖象頂點關于x軸對稱,那么b=_____.15.若x=﹣1是關于x的一元二次方程x2+3x+m+1=0的一個解,則m的值為______.16.閱讀以下作圖過程:第一步:在數(shù)軸上,點O表示數(shù)0,點A表示數(shù)1,點B表示數(shù)5,以AB為直徑作半圓(如圖);第二步:以B點為圓心,1為半徑作弧交半圓于點C(如圖);第三步:以A點為圓心,AC為半徑作弧交數(shù)軸的正半軸于點M.請你在下面的數(shù)軸中完成第三步的畫圖(保留作圖痕跡,不寫畫法),并寫出點M表示的數(shù)為______.17.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為P(2,9),與x軸交于點A,B,與y軸交于點C(0,5).(Ⅰ)求二次函數(shù)的解析式及點A,B的坐標;(Ⅱ)設點Q在第一象限的拋物線上,若其關于原點的對稱點Q′也在拋物線上,求點Q的坐標;(Ⅲ)若點M在拋物線上,點N在拋物線的對稱軸上,使得以A,C,M,N為頂點的四邊形是平行四邊形,且AC為其一邊,求點M,N的坐標.19.(5分)如圖1,在等邊三角形中,為中線,點在線段上運動,將線段繞點順時針旋轉,使得點的對應點落在射線上,連接,設(且).(1)當時,①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數(shù)量關系,并加以證明;(2)當時,直接寫出線段,,之間的數(shù)量關系.20.(8分)2019年1月,溫州軌道交通線正式運營,線有以下4種購票方式:A.二維碼過閘B.現(xiàn)金購票C.市名卡過閘D.銀聯(lián)閃付某興趣小組為了解最受歡迎的購票方式,隨機調(diào)查了某區(qū)的若干居民,得到如圖所示的統(tǒng)計圖,已知選擇方式D的有200人,求選擇方式A的人數(shù).小博和小雅對A,B,C三種購票方式的喜愛程度相同,隨機選取一種方式購票,求他們選擇同一種購票方式的概率.(要求列表或畫樹狀圖).21.(10分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結DC并延長至E,使得CE=CD,連結BE,BC.(1)求拋物線的解析式;(2)用含m的代數(shù)式表示點E的坐標,并求出點E縱坐標的范圍;(3)求△BCE的面積最大值.22.(10分)如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.(1)求證:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的長.23.(12分)解不等式組,請結合題意填空,完成本題的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在數(shù)軸上表示出來;(4)原不等式組的解集為_____.24.(14分)已知:如圖,平行四邊形ABCD中,E、F分別是邊BC和AD上的點,且BE=DF,求證:AE=CF

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)絕對值的性質(zhì)進行解答即可.【詳解】實數(shù)﹣5.1的絕對值是5.1.故選A.本題考查的是實數(shù)的性質(zhì),熟知絕對值的性質(zhì)是解答此題的關鍵.2、C【解析】

直接利用平方差公式分解因式即可.【詳解】(x+3)2?(x?1)2=[(x+3)+(x?1)][(x+3)?(x?1)]=4(2x+2)=8(x+1).故選C.此題主要考查了公式法分解因式,正確應用平方差公式是解題關鍵.3、C【解析】

試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯誤;綜上所述,結論正確的是①②③④共4個.故選C.考點:1、矩形的性質(zhì);2、全等三角形的判定與性質(zhì);3、角平分線的性質(zhì);4、等腰三角形的判定與性質(zhì)4、D【解析】

根據(jù)中位數(shù)的定義判斷A;根據(jù)眾數(shù)的定義判斷B;根據(jù)方差的定義判斷C;根據(jù)平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實數(shù),故本選項錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實數(shù),故本選項錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;

故選D.本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.5、C【解析】試題分析:∵點M,N表示的有理數(shù)互為相反數(shù),∴原點的位置大約在O點,∴絕對值最小的數(shù)的點是P點,故選C.考點:有理數(shù)大小比較.6、A【解析】過C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=AC=×15=7.5m,CE=AC?cos30°=15×=,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE?tan60°=×=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故選A.【點睛】本題考查的知識點是解直角三角形的應用,關鍵是構建直角三角形,解直角三角形求出答案.7、B【解析】

根據(jù)科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),且為這個數(shù)的整數(shù)位數(shù)減1,由此即可解答.【詳解】29.8億用科學記數(shù)法表示為:29.8億=2980000000=2.98×1.故選B.本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.8、D【解析】

根據(jù)拋物線的圖象與系數(shù)的關系即可求出答案.【詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點可知:c<0,由拋物線的對稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當x=﹣c時,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設關于x的方程ax1+bx+c=0(a≠0)有一個根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點分布在對稱軸的兩側,∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對稱軸的距離小于x1到對稱軸的距離,∴y1>y1,故⑤正確.故選D.本題考查的是二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)y=ax1+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.本題屬于中等題型.9、B【解析】

由平行四邊形性質(zhì)得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數(shù)求出CF長,再用勾股定理CE,即可得出AB的長.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據(jù)勾股定理得,CE==,∴AB=CE=,故選B.本題考查了平行四邊形的性質(zhì)和判定、平行線的性質(zhì),三角函數(shù)的運用;熟練掌握平行四邊形的性質(zhì),勾股定理,判斷出AB=CE是解決問題的關鍵.10、A【解析】

由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b-1)x+c=0有兩個不相等的根,進而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,根據(jù)方程根與系數(shù)的關系得出函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,即可進行判斷.【詳解】點P在拋物線上,設點P(x,ax2+bx+c),又因點P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點,∴方程ax2+(b-1)x+c=0有兩個正實數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.二、填空題(共7小題,每小題3分,滿分21分)11、11【解析】

根據(jù)長方形的對邊相等,每一個角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“邊角邊”證明Rt△ABD和Rt△CDB全等;根據(jù)等底等高的三角形面積相等解答.【詳解】有,Rt△ABD≌Rt△CDB,理由:在長方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD與△BFA,△ABD與△AFD,△ABE與△DFE,△AFD與△BCD面積相等,但不全等.故答案為:1;1.本題考查了全等三角形的判定,長方形的性質(zhì),以及等底等高的三角形的面積相等.12、132°【解析】解:∵正五邊形的內(nèi)角=180°-360°÷5=108°,正六邊形的內(nèi)角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案為132°.13、3或【解析】

以B.E.D為頂點的三角形與△DEF相似分兩種情形畫圖分別求解即可.【詳解】如圖作CM⊥AB當∠FED=∠EDB時,∵∠B=∠EAF=∠EDF∴△EDF~△DBE∴EF∥CB,設EF交AD于點O∵AO=OD,OE∥BD∴AE=EB=3當∠FED=∠DEB時則∠FED=∠FEA=∠DEB=60°此時△FED~△DEB,設AE=ED=x,作DN⊥AB于N,則EN=,DN=,∵DN∥CM,∴∴∴x∴BE=6-x=故答案為3或本題考察學生對相似三角形性質(zhì)定理的掌握和應用,熟練掌握相似三角形性質(zhì)定理是解答本題的關鍵,本題計算量比較大,計算能力也很關鍵.14、﹣1【解析】

根據(jù)題意可以得到交換函數(shù),由頂點關于x軸對稱,從而得到關于b的方程,可以解答本題.【詳解】由題意函數(shù)y=1x1+bx的交換函數(shù)為y=bx1+1x.∵y=1x1+bx=,y=bx1+1x=,函數(shù)y=1x1+bx與它的交換函數(shù)圖象頂點關于x軸對稱,∴﹣=﹣且,解得:b=﹣1.故答案為﹣1.本題考查了二次函數(shù)的性質(zhì).理解交換函數(shù)的意義是解題的關鍵.15、1【解析】試題分析:將x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考點:一元二次方程的解.16、作圖見解析,【解析】解:如圖,點M即為所求.連接AC、BC.由題意知:AB=4,BC=1.∵AB為圓的直徑,∴∠ACB=90°,則AM=AC===,∴點M表示的數(shù)為.故答案為.點睛:本題主要考查作圖﹣尺規(guī)作圖,解題的關鍵是熟練掌握尺規(guī)作圖和圓周角定理及勾股定理.17、【解析】

利用特殊三角形的三邊關系,求出AM,AE長,求比值.【詳解】解:如圖所示,設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,如圖,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=,故答案為:.特殊三角形:30°-60°-90°特殊三角形,三邊比例是1::2,利用特殊三角函數(shù)值或者勾股定理可快速求出邊的實際關系.三、解答題(共7小題,滿分69分)18、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】

(1)設頂點式,再代入C點坐標即可求解解析式,再令y=0可求解A和B點坐標;(2)設點Q(m,﹣m2+4m+5),則其關于原點的對稱點Q′(﹣m,m2﹣4m﹣5),再將Q′坐標代入拋物線解析式即可求解m的值,同時注意題干條件“Q在第一象限的拋物線上”;(3)利用平移AC的思路,作MK⊥對稱軸x=2于K,使MK=OC,分M點在對稱軸左邊和右邊兩種情況分類討論即可.【詳解】(Ⅰ)設二次函數(shù)的解析式為y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)設點Q(m,﹣m2+4m+5),則Q′(﹣m,m2﹣4m﹣5).把點Q′坐標代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=或(舍棄),∴Q(,).(Ⅲ)如圖,作MK⊥對稱軸x=2于K.①當MK=OA,NK=OC=5時,四邊形ACNM是平行四邊形.∵此時點M的橫坐標為1,∴y=8,∴M(1,8),N(2,13),②當M′K=OA=1,KN′=OC=5時,四邊形ACM′N′是平行四邊形,此時M′的橫坐標為3,可得M′(3,8),N′(2,3).本題主要考查了二次函數(shù)的應用,第3問中理解通過平移AC可應用“一組對邊平行且相等”得到平行四邊形.19、(1)①;②;(2)【解析】

(1)①先根據(jù)等邊三角形的性質(zhì)的,進而得出,最后用三角形的內(nèi)角和定理即可得出結論;②先判斷出,得出,再判斷出是底角為30度的等腰三角形,再構造出直角三角形即可得出結論;(2)同②的方法即可得出結論.【詳解】(1)當時,①畫出的圖形如圖1所示,∵為等邊三角形,∴.∵為等邊三角形的中線∴是的垂直平分線,∵為線段上的點,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,∴;②;如圖2,延長到點,使得,連接,作于點.∵,點在上,∴.∵點在的延長線上,,∴.∴.又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,即為底角為的等腰三角形.∴.∴.(2)如圖3,當時,在上取一點使,∵為等邊三角形,∴.∵為等邊三角形的中線,∵為線段上的點,∴是的垂直平分線,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,∴.∴.此題是幾何變換綜合題,主要考查了等邊三角形的性質(zhì),三角形的內(nèi)角和定理,全等三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì),銳角三角函數(shù),作出輔助線構造出全等三角形是解本題的關鍵.20、(1)600人(2)【解析】

(1)計算方式A的扇形圓心角占D的圓心角的分率,然后用方式D的人數(shù)乘這個分數(shù)即為方式A的人數(shù);(2)列出表格或樹狀圖分別求出所有情況以及兩名同學恰好選中同一種購票方式的情況后,利用概率公式即可求出兩名同學恰好選中同一種購票方式的概率.【詳解】(1)(人),∴最喜歡方式A的有600人(2)列表法:ABCAA,AA,BA,CBB,AB,BB,CCC,AC,BC,C樹狀法:∴(同一種購票方式)本題考查扇形統(tǒng)計圖的運用和列表法或畫樹狀圖求概率的運用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)當m=1.5時,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B兩點代入拋物線解析式即可;(2)設,利用求線段中點的公式列出關于m的方程組,再利用0<m<1即可求解;(1)連結BD,過點D作x軸的垂線交BC于點H,由,設出點D的坐標,進而求出點H的坐標,利用三角形的面積公式求出,再利用公式求二次函數(shù)的最值即可.詳解:(1)∵拋物線過點A(1,0)和B(1,0)(2)∵∴點C為線段DE中點設點E(a,b)∵0<m<1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論