版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆廣東省深圳市高峰學校數(shù)學九年級第一學期期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,已知在ΔABC中,DE∥BC,則以下式子不正確的是()A. B. C. D.2.如圖,中,,,,分別為邊的中點,將繞點順時針旋轉(zhuǎn)到的位置,則整個旋轉(zhuǎn)過程中線段所掃過部分的面積(即陰影部分面積)為()A. B. C. D.3.將拋物線向左平移個單位長度,再向.上平移個單位長度得到的拋物線的解析式為()A. B.C. D.4.在陽光的照射下,一塊三角板的投影不會是()A.線段 B.與原三角形全等的三角形C.變形的三角形 D.點5.如果某物體的三視圖是如圖所示的三個圖形,那么該物體的形狀是A.正方體B.長方體C.三棱柱D.圓錐6.若,相似比為2,且的面積為12,則的面積為()A.3 B.6 C.24 D.487.一元二次方程有實數(shù)解的條件()A. B. C. D.8.關于拋物線y=x2﹣6x+9,下列說法錯誤的是()A.開口向上 B.頂點在x軸上C.對稱軸是x=3 D.x>3時,y隨x增大而減小9.去年某果園隨機從甲、乙、丙、丁四個品種的葡萄樹中各采摘了10棵,每棵產(chǎn)量的平均數(shù)(單位:千克)及方差(單位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年準備從四個品種中選出一種產(chǎn)量既高又穩(wěn)定的葡萄樹進行種植,應選的品種是(
)A.甲 B.乙 C.丙 D.丁10.若關于x的一元二次方程kx2﹣2x﹣1=0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠011.已知點P(-1,4)在反比例函數(shù)的圖象上,則k的值是()A. B. C.4 D.-412.如圖,在△ABC中,DE∥BC,BE和CD相交于點F,且S△EFC=3S△EFD,則S△ADE:S△ABC的值為()A.1:3 B.1:8 C.1:9 D.1:4二、填空題(每題4分,共24分)13.一個幾何體是由一些大小相同的小正方塊擺成的,其俯視圖與主視圖如圖所示,則組成這個幾何體的小正方塊最多有________.14.如圖所示的兩個四邊形相似,則的度數(shù)是.15.某居民小區(qū)為了解小區(qū)500戶居民家庭平均月使用塑料袋的數(shù)量情況,隨機調(diào)查了10戶居民家庭月使用塑料袋的數(shù)量,結(jié)果如下(單位:只):65,70,85,74,86,78,74,92,82,1.根據(jù)統(tǒng)計情況,估計該小區(qū)這500戶家庭每月一共使用塑料袋_________只.16.若點在反比例函數(shù)的圖象上,則的大小關系是_____________.17.如圖,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在線段AB上取一點D,作DF⊥AB交AC于點F.現(xiàn)將△ADF沿DF折疊,使點A落在線段DB上,對應點記為A1;AD的中點E的對應點記為E1.若△E1FA1∽△E1BF,則AD=.18.如圖,在中,弦,點在上移動,連結(jié),過點作交于點,則的最大值為__________.三、解答題(共78分)19.(8分)如圖,∠A=∠B=50°,P為AB中點,點M為射線AC上(不與點A重合)的任意點,連接MP,并使MP的延長線交射線BD于點N,設∠BPN=α.(1)求證:△APM≌△BPN;(2)當MN=2BN時,求α的度數(shù);(3)若△BPN的外心在該三角形的內(nèi)部,直接寫出α的取值范圍.20.(8分)如圖,在平面直角坐標系xOy中,直線y=x﹣2與雙曲線y=(k≠0)相交于A,B兩點,且點A的橫坐標是1.(1)求k的值;(2)過點P(0,n)作直線,使直線與x軸平行,直線與直線y=x﹣2交于點M,與雙曲線y=(k≠0)交于點N,若點M在N右邊,求n的取值范圍.21.(8分)如圖,在平面直角坐標系中,已知三個頂點的坐標分別是,,.(1)以點為位似中心,將縮小為原來的得到,請在軸右側(cè)畫出;(2)的正弦值為.22.(10分)已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GE?GD.(1)求證:∠ACF=∠ABD;(2)連接EF,求證:EF?CG=EG?CB.23.(10分)在一個不透明的袋子中裝有3個乒乓球,分別標有數(shù)字1,2,3,這些乒乓球除所標數(shù)字不同外其余均相同.先從袋子中隨機摸出1個乒乓球,記下標號后放回,再從袋子中隨機摸出1個乒乓球記下標號,用畫樹狀圖(或列表)的方法,求兩次摸出的乒乓球標號之和是偶數(shù)的概率.24.(10分)如圖,AB是⊙O的直徑,BC交⊙O于點D,E是的中點,連接AE交BC于點F,∠ACB=2∠EAB.(1)求證:AC是⊙O的切線;(2)若,,求BF的長.25.(12分)如圖,在中,,的平分線交于,為上一點,,以為圓心,以的長為半徑畫圓.(1)求證:是⊙的切線;(2)求證:.26.如圖.已知為半圓的直徑,,為弦,且平分.(1)若,求的度數(shù):(2)若,,求的長.
參考答案一、選擇題(每題4分,共48分)1、D【分析】由DE∥BC可以推得ΔADE~ΔABC,再由相似三角形的性質(zhì)出發(fā)可以判斷各選項的對錯.【詳解】∵DE∥BC,∴ΔADE~ΔABC,所以有:A、,正確;B、由A得,即,正確;C、,即,正確;D、,即,錯誤.故選D.本題考查三角形相似的判定與性質(zhì),根據(jù)三角形相似的性質(zhì)寫出有關線段的比例式是解題關鍵.2、C【分析】連接BH,BH1,先證明△OBH≌△O1BH1,再根據(jù)勾股定理算出BH,再利用扇形面積公式求解即可.【詳解】∵O、H分別為邊AB,AC的中點,將△ABC繞點B順時針旋轉(zhuǎn)120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得BH=,所以利用扇形面積公式可得.故選C.本題考查全等三角形的判定及性質(zhì)、勾股定理、扇形面積的計算,利用全等對面積進行等量轉(zhuǎn)換方便計算是關鍵.3、B【分析】原拋物線的頂點坐標(0,0),再把點(0,0)向左平移4個單位長度得點(0,-4),再向上平移1個單位長度得到點(-4,1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線先向左平移個單位長度,得到的拋物線解析式為,再向上平移個單位長度得到的拋物線解析式為,故選:.本題考查的是拋物線平移,根據(jù)拋物線平移規(guī)律“左移加右移減,上移加下移減”寫出平移后的拋物線解析式.需要注意左平移是加,右平移是減.4、D【分析】將一個三角板放在太陽光下,當它與陽光平行時,它所形成的投影是一條線段;當它與陽光成一定角度但不垂直時,它所形成的投影是三角形.【詳解】解:根據(jù)太陽高度角不同,所形成的投影也不同.當三角板與陽光平行時,所形成的投影為一條線段;當它與陽光形成一定角度但不垂直時,它所形成的投影是三角形,不可能是一個點,故選D.本題考查了平行投影特點,不同位置,不同時間,影子的大小、形狀可能不同,具體形狀應視其外在形狀,及其與光線的夾角而定.5、C【解析】解:只有三棱柱的俯視圖為三角形,故選C.6、A【解析】試題分析:∵△ABC∽△DEF,相似比為2,∴△ABC與△DEF的面積比為4,∵△ABC的面積為12,∴△DEF的面積為:12×=1.故選A.考點:相似三角形的性質(zhì).7、B【分析】根據(jù)一元二次方程的根的判別式即可得.【詳解】一元二次方程有實數(shù)解則,即解得故選:B.本題考查了一元二次方程的根的判別式,熟記根的判別式是解題關鍵.對于一般形式有:(1)當時,方程有兩個不相等的實數(shù)根;(2)當時,方程有兩個相等的實數(shù)根;(3)當時,方程沒有實數(shù)根.8、D【分析】直接利用二次函數(shù)的性質(zhì)進而分別分析得出答案.【詳解】解:,
則a=1>0,開口向上,頂點坐標為:(3,0),對稱軸是x=3,故選項A,B,C都正確,不合題意;
x>3時,y隨x增大而增大,故選項D錯誤,符合題意.
故選:D.此題主要考查了二次函數(shù)的性質(zhì),正確掌握相關性質(zhì)是解題關鍵.9、B【分析】先比較平均數(shù)得到甲組和乙組產(chǎn)量較好,然后比較方差得到乙組的狀態(tài)穩(wěn)定.【詳解】因為甲組、乙組的平均數(shù)丙組比丁組大,而乙組的方差比甲組的小,所以乙組的產(chǎn)量比較穩(wěn)定,所以乙組的產(chǎn)量既高又穩(wěn)定,故選B.本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.10、D【解析】∵一元二次方程kx2﹣2x﹣1=1有兩個不相等的實數(shù)根,∴△=b2﹣4ac=4+4k>1,且k≠1.解得:k>﹣1且k≠1.故選D.考點:一元二次方程的定義,一元二次方程根的判別式,分類思想的應用.11、D【分析】根據(jù)反比例函數(shù)圖象上的點的坐標特征,將P(﹣1,1)代入反比例函數(shù)的解析式(k≠0),然后解關于k的方程,即可求得k=-1.【詳解】解:將P(﹣1,1)代入反比例函數(shù)的解析式(k≠0),解得:k=-1.故選D.本題考查待定系數(shù)法求反比例函數(shù)解析式,掌握求解步驟正確計算是本題的解題關鍵.12、C【分析】根據(jù)題意,易證△DEF∽△CBF,同理可證△ADE∽△ABC,根據(jù)相似三角形面積比是對應邊比例的平方即可解答.【詳解】∵S△EFC=3S△DEF,∴DF:FC=1:3(兩個三角形等高,面積之比就是底邊之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故選:C.本題考查相似三角形的判定和性質(zhì),解題的關鍵是掌握相似三角形面積比是對應邊比例的平方.二、填空題(每題4分,共24分)13、6【解析】符合條件的最多情況為:即最多為2+2+2=614、.【解析】由兩個四邊形相似,根據(jù)相似多邊形的對應角相等,即可求得∠A的度數(shù),又由四邊形的內(nèi)角和等于360°,即可求得∠α的度數(shù).【詳解】解:∵四邊形ABCD∽四邊形A′B′C′D′,
∴∠A=∠A′=138°,
∵∠A+∠B+∠C+∠D=360°,
∴∠α=360°-∠A-∠B-∠C=360°-60°-138°-75°==87°.
故答案為87°.此題考查了相似多邊形的性質(zhì).此題比較簡單,解題的關鍵是掌握相似多邊形的對應角相等定理的應用.15、2【分析】先求出10戶居民平均月使用塑料袋的數(shù)量,然后估計500戶家庭每月一共使用塑料袋的數(shù)量即可.【詳解】解:10戶居民平均月使用塑料袋的數(shù)量為:(65+70+85+74+86+78+74+92+82+1)÷10=80,∴500×80=2(只),故答案為2.本題考查統(tǒng)計思想,用樣本平均數(shù)估計總體平均數(shù),10戶居民平均月使用塑料袋的數(shù)量是解答本題的關鍵.16、y1>y3>y1【分析】由題意可把用k表示出來,然后根據(jù)不等式的性質(zhì)可以得到的大?。驹斀狻坑深}意得:,∵-1<<,k<0∴-k>>即y1>y3>y1.故答案為y1>y3>y1.本題考查反比例函數(shù)的知識,根據(jù)反比例函數(shù)圖象上點的橫坐標得到其縱坐標是解題關鍵.17、3.2.【詳解】解:∵∠ACB=90°,AB=20,BC=6,∴.設AD=2x,∵點E為AD的中點,將△ADF沿DF折疊,點A對應點記為A2,點E的對應點為E2,∴AE=DE=DE2=A2E2=x.∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD.∴AD:AC=DF:BC,即2x:8=DF:6,解得DF=2.5x.在Rt△DE2F中,E2F2=DF2+DE22=3.25x2,又∵BE2=AB-AE2=20-3x,△E2FA2∽△E2BF,∴E2F:A2E2=BE2:E2F,即E2F2=A2E2?BE2.∴,解得x=2.6或x=0(舍去).∴AD的長為2×2.6=3.2.18、2【分析】連接OD,根據(jù)勾股定理求出CD,利用垂線段最短得到當OC⊥AB時,OC最小,根據(jù)垂徑定理計算即可;【詳解】如圖,連接OD,∵CD⊥OC,∴∠DCO=,∴,當OC的值最小時,CD的值最大,OC⊥AB時,OC最小,此時D、B兩點重合,∴CD=CB=AB=2,即CD的最大值為2;故答案為:2.本題主要考查了勾股定理,垂徑定理,掌握勾股定理,垂徑定理是解題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2)α=50°;(3)40°<α<90°.【解析】(1)根據(jù)AAS即可證明△APM≌△BPN;(2)由(1)中的全等得:MN=2PN,所以PN=BN,由等邊對等角可得結(jié)論;(3)三角形的外心是外接圓的圓心,三邊垂直平分線的交點,直角三角形的外心在直角頂點上,鈍角三角形的外心在三角形的外部,只有銳角三角形的外心在三角形的內(nèi)部,所以根據(jù)題中的要求可知:△BPN是銳角三角形,由三角形的內(nèi)角和可得結(jié)論.【詳解】(1)∵P是AB的中點,∴PA=PB,在△APM和△BPN中,,∴△APM≌△BPN;(2)由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)∵△BPN的外心在該三角形的內(nèi)部,∴△BPN是銳角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.本題考查了全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、三角形外接圓圓心的位置等,綜合性較強,難度適中,解題的關鍵是熟練掌握三角形外心的位置.20、(1)k=1;(2)n>1或﹣1<n<2.【分析】(1)把點A的橫坐標代入一次函數(shù)解析式求出縱坐標,確定出點A的坐標,代入反比例解析式求出k的值即可;
(2)根據(jù)題意畫出直線,根據(jù)圖象確定出點M在N右邊時n的取值范圍即可.【詳解】解:(1)令x=1,代入y=x﹣2,則y=1,∴A(1,1),∵點A(1,1)在雙曲線y=(k≠2)上,∴k=1;(2)聯(lián)立得:,解得或,即B(﹣1,﹣1),如圖所示:當點M在N右邊時,n的取值范圍是n>1或﹣1<n<2.此題考查了一次函數(shù)與反比例函數(shù)的交點問題,利用了數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關鍵.21、(1)見解析;(2)【分析】(1)連接、,分別取、、的中點即可畫出△,(2)利用正弦函數(shù)的定義可知.由,即可解決問題.【詳解】解:(1)連接OA、OC,分別取OA、OB、OC的中點、、,順次連接、、,△即為所求,如圖所示,(2),,,,.,.本題考查位似變換、平移變換等知識,銳角三角函數(shù)等知識,解題的關鍵是掌握位似變換的定義和性質(zhì),并據(jù)此得出變換后的對應點.注意:記住銳角三角函數(shù)的定義,屬于中考??碱}型.22、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)先根據(jù)CG2=GE?GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根據(jù)AB∥CD得出∠ABD=∠BDC,故可得出結(jié)論;(2)先根據(jù)∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,進而可得出結(jié)論.試題解析:(1)∵CG2=GE?GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FE?CG=EG?CB.考點:相似三角形的判定與性質(zhì).23、圖形見解析,概率為【分析】根據(jù)題意列出樹形圖,再利用概率公式計算即可.【詳解】根據(jù)題意,列表如下:共有9種結(jié)果,并且它們出現(xiàn)的可能性相等,符合題意的結(jié)果有5種,.本題考查概率的計算,關鍵在于熟悉樹形圖和概率公式.24、(1)證明見解析;(2).【分析】(1)連接AD,如圖,根據(jù)圓周角定理,再根據(jù)切線的判定定理得到AC是⊙O的切線;(2)作F做FH⊥AB于點H,利用余弦定義,再根據(jù)三角函數(shù)定義求解即可【詳解】(1)證明:如圖,連接AD.∵E是中點,∴.∴∠DAE=∠EAB.∵∠C=2∠EAB,∴∠C=∠BAD.∵AB是⊙O的直徑.∴∠ADB=∠ADC=90°.∴∠C+∠CAD=90°.∴∠BAD+∠CAD=90°.即BA⊥AC∴AC是⊙O的切線.(2)解:如圖②,過點F做F
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智能城市公共交通調(diào)度系統(tǒng)可行性研究報告
- 2025年即時配送服務網(wǎng)絡建設項目可行性研究報告
- 2025年可再生能源研發(fā)項目可行性研究報告
- 網(wǎng)貸合同解約協(xié)議
- 2025年短視頻平臺營銷效果提升項目可行性研究報告
- 金蝶數(shù)據(jù)顧問崗位面試題集
- 航空公司財務主管面試問題集
- 市場準入專員筆試考試題庫含答案
- 天津港質(zhì)量檢查考核標準
- 2025年關鍵材料回收與再利用項目可行性研究報告
- 四川省達州市達川中學2025-2026學年八年級上學期第二次月考數(shù)學試題(無答案)
- 2025陜西西安市工會系統(tǒng)開招聘工會社會工作者61人歷年題庫帶答案解析
- 江蘇省南京市秦淮區(qū)2024-2025學年九年級上學期期末物理試題
- 外賣平臺2025年商家協(xié)議
- 2025年高職(鐵道車輛技術)鐵道車輛制動試題及答案
- (新教材)2026年人教版八年級下冊數(shù)學 24.4 數(shù)據(jù)的分組 課件
- 2025陜西榆林市榆陽區(qū)部分區(qū)屬國有企業(yè)招聘20人考試筆試模擬試題及答案解析
- 老年慢性病管理及康復護理
- 2025廣西自然資源職業(yè)技術學院下半年招聘工作人員150人(公共基礎知識)測試題帶答案解析
- 2026年海南經(jīng)貿(mào)職業(yè)技術學院單招(計算機)考試參考題庫及答案1套
- 代辦執(zhí)照合同范本
評論
0/150
提交評論