版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省萊蕪萊城區(qū)五校聯(lián)考2026屆九年級數(shù)學第一學期期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.方程x2﹣4x+5=0根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.沒有實數(shù)根2.在平面直角坐標系中,點(-2,6)關于原點對稱的點的坐標是()A.(2,-6) B.(-2,6) C.(-6,2) D.(-6,2)3.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.104.已知三角形兩邊的長分別是3和6,第三邊的長是方程x2﹣6x+8=0的根,則這個三角形的周長等于()A.13 B.11 C.11或1 D.12或15.如圖,點在反比例函數(shù)的圖象上,過點的直線與軸,軸分別交于點,,且,的面積為,則的值為()A. B. C. D.6.已知反比例函數(shù)的圖象經(jīng)過點(1,2),則k的值為()A.0.5 B.1 C.2 D.47.如圖,網(wǎng)格中的兩個三角形是位似圖形,它們的位似中心是()A.點A B.點B C.點C D.點D8.中,,,,則的值是()A. B. C. D.9.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°得到△A′B′C′的位置,連接C′B,則C′B的長為()A.2- B. C. D.110.方程x(x﹣5)=x的解是()A.x=0
B.x=0或x=5
C.x=6 D.x=0或x=6二、填空題(每小題3分,共24分)11.在平面直角坐標系中,拋物線的圖象如圖所示.已知點坐標為,過點作軸交拋物線于點,過點作交拋物線于點,過點作軸交拋物線于點,過點作交拋物線于點……,依次進行下去,則點的坐標為_____.12.在一個不透明的盒子里有2個紅球和個白球,這些求除顏色外其余完全相同,搖勻后隨機摸出一個,摸出紅球的概率是,則的值為__________.13.已知△ABC∽△A'B'C',S△ABC:S△A'B'C'=1:4,若AB=2,則A'B'的長為_____.14.已知:∠BAC.(1)如圖,在平面內任取一點O;(2)以點O為圓心,OA為半徑作圓,交射線AB于點D,交射線AC于點E;(3)連接DE,過點O作線段DE的垂線交⊙O于點P;(4)連接AP,DP和PE.根據(jù)以上作圖過程及所作圖形,下列四個結論中:①△ADE是⊙O的內接三角形;②;③DE=2PE;④AP平分∠BAC.所有正確結論的序號是______________.15.如圖,一副含和角的三角板和拼合在一個平面上,邊與重合,.當點從點出發(fā)沿方向滑動時,點同時從點出發(fā)沿射線方向滑動.當點從點滑動到點時,點運動的路徑長為______.16.一中和二中舉行數(shù)學知識競賽,參賽學生的競賽得分統(tǒng)計結果如下表:學校參賽人數(shù)平均數(shù)中位數(shù)方差一中45838682二中458384135某同學分析上表后得到如下結論:.①一中和二中學生的平均成績相同;②一中優(yōu)秀的人數(shù)多于二中優(yōu)秀的人數(shù)(競賽得分85分為優(yōu)秀);③二中成績的波動比一中小.上述結論中正確的是___________.(填寫所有正確結論的序號)17.已知正六邊形的邊長為4cm,分別以它的三個不相鄰的頂點為圓心,邊長為半徑畫?。ㄈ鐖D),則所得到的三條弧的長度之和為cm.(結果保留π)18.關于的一元二次方程的一個根,則另一個根______.三、解答題(共66分)19.(10分)如圖所示,在平面直角坐標系中,過點A(﹣,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標分別是一元二次方程x2﹣2x﹣3=0的兩個根.(1)求線段BC的長度;(2)試問:直線AC與直線AB是否垂直?請說明理由;(3)若點D在直線AC上,且DB=DC,求點D的坐標.20.(6分)如圖,已知AB是⊙O的直徑,過點O作弦BC的平行線,交過點A的切線AP于點P,連結AC.求證:△ABC∽△POA.21.(6分)某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系:(1)求出y與x之間的函數(shù)關系式;(2)如果商店銷售這種商品,每天要獲得1500元利潤,那么每件商品的銷售價應定為多少元?(3)寫出每天的利潤W與銷售單價x之間的函數(shù)關系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?22.(8分)計算:23.(8分)已知拋物線y=ax2+bx+3經(jīng)過點A(﹣1,0)、B(3,0),且與y軸交于點C,拋物線的對稱軸與x軸交于點D.(1)求拋物線的解析式;(2)點P是y軸正半軸上的一個動點,連結DP,將線段DP繞著點D順時針旋轉90°得到線段DE,點P的對應點E恰好落在拋物線上,求出此時點P的坐標;(3)點M(m,n)是拋物線上的一個動點,連接MD,把MD2表示成自變量n的函數(shù),并求出MD2取得最小值時點M的坐標.24.(8分)已知:如圖(1),射線AM∥射線BN,AB是它們的公垂線,點D、C分別在AM、BN上運動(點D與點A不重合、點C與點B不重合),E是AB邊上的動點(點E與A、B不重合),在運動過程中始終保持DE⊥EC.(1)求證:△ADE∽△BEC;(2)如圖(2),當點E為AB邊的中點時,求證:AD+BC=CD;(3)當AD+DE=AB=時.設AE=m,請?zhí)骄浚骸鰾EC的周長是否與m值有關?若有關,請用含有m的代數(shù)式表示△BEC的周長;若無關,請說明理由.25.(10分)如圖,△OAB中,OA=OB=10cm,∠AOB=80°,以點O為圓心,半徑為6cm的優(yōu)弧分別交OA、OB于點M、N.(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉80°得OP′.求證:AP=BP′;(2)點T在左半弧上,若AT與圓弧相切,求AT的長.(3)Q為優(yōu)弧上一點,當△AOQ面積最大時,請直接寫出∠BOQ的度數(shù)為.26.(10分)如圖1,拋物線y=ax2+bx-3經(jīng)過A、B、C三點,己知點A(-3,0)、C(1,0).(1)求此拋物線的解析式;(2)點P是直線AB下方的拋物線上一動點(不與A、B重合).①過點P作x軸的垂線,垂足為D,交直線AB于點E,動點P在什么位置時,PE最大,求出此時P點的坐標;②如圖2,連接AP,以AP為邊作圖示一側的正方形APMN,當它恰好有一個頂點落在拋物線對稱軸上時,求出對應的P點的坐標.
參考答案一、選擇題(每小題3分,共30分)1、D【詳解】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程沒有實數(shù)根.2、A【分析】根據(jù)關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù),可得答案.【詳解】解:點A(-2,6)關于原點對稱的點的坐標是(2,-6),
故選:A.本題考查了關于原點對稱的點的坐標,利用關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù)是解題關鍵.3、C【解析】由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.本題主要考查切線的性質,利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關鍵.4、A【分析】首先從方程x2﹣6x+8=0中,確定第三邊的邊長為2或4;其次考查2,3,6或4,3,6能否構成三角形,從而求出三角形的周長.【詳解】解:由方程x2-6x+8=0,解得:x1=2或x2=4,當?shù)谌吺?時,2+3<6,不能構成三角形,應舍去;當?shù)谌吺?時,三角形的周長為:4+3+6=1.故選:A.考查了三角形三邊關系,求三角形的周長,不能盲目地將三邊長相加起來,而應養(yǎng)成檢驗三邊長能否成三角形的好習慣,不符合題意的應棄之.5、D【分析】過點C作CD⊥x軸交于點D,連接OC,則CD∥OB,得AO=OD,CD=2OB,進而得的面積為4,即可得到答案.【詳解】過點C作CD⊥x軸交于點D,連接OC,則CD∥OB,∵,∴AO=OD,∴OB是?ADC的中位線,∴CD=2OB,∵的面積為,∴的面積為4,∵點在反比例函數(shù)的圖象上,∴k=2×4=8,故選D.本題主要考查反比例函數(shù)比例系數(shù)k的幾何意義,添加輔助線,求出的面積,是解題的關鍵.6、C【解析】將(1,1)代入解析式中即可.【詳解】解:將點(1,1)代入解析式得,,k=1.故選:C.此題考查的是求反比例系數(shù)解析式,掌握用待定系數(shù)法求反比例函數(shù)解析式是解決此題的關鍵.7、D【分析】利用對應點的連線都經(jīng)過同一點進行判斷.【詳解】如圖,位似中心為點D.故選D.本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.注意:兩個圖形必須是相似形;對應點的連線都經(jīng)過同一點;對應邊平行.8、D【分析】根據(jù)勾股定理求出BC的長度,再根據(jù)cos函數(shù)的定義求解,即可得出答案.【詳解】∵AC=,AB=4,∠C=90°∴∴故答案選擇D.本題考查的是勾股定理和三角函數(shù),比較簡單,需要熟練掌握sin函數(shù)、cos函數(shù)和tan函數(shù)分別代表的意思.9、C【分析】如圖,連接BB′,延長BC′交AB′于點D,證明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD、C′D的長,即可解決問題.【詳解】解:如圖,連接BB′,延長BC′交AB′于點D,
由題意得:∠BAB′=60°,BA=B′A,
∴△ABB′為等邊三角形,
∴∠ABB′=60°,AB=B′B;
在△ABC′與△B′BC′中,∴△ABC′≌△B′BC′(SSS),
∴∠DBB′=∠DBA=30°,
∴BD⊥AB′,且AD=B′D,∵AC=BC=,∴,∴,,,.故選:C.本題考查旋轉的性質,全等三角形的性質和判定,等邊三角形的判定與性質,等腰直角三角形的性質,直角三角形斜邊上的中線.作輔助線構造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵,也是本題的難點.10、D【分析】先移項,然后利用因式分解法解方程.【詳解】解:x(x﹣5)﹣x=0,x(x﹣5﹣1)=0,x=0或x﹣5﹣1=0,∴x1=0或x2=1.故選:D.本題考查了解一元二次方程﹣因式分解法:先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).二、填空題(每小題3分,共24分)11、【解析】根據(jù)二次函數(shù)性質可得出點的坐標,求得直線為,聯(lián)立方程求得的坐標,即可求得的坐標,同理求得的坐標,即可求得的坐標,根據(jù)坐標的變化找出變化規(guī)律,即可找出點的坐標.【詳解】解:∵點坐標為,∴直線為,,∵,∴直線為,解得或,∴,∴,∵,∴直線為,解得或,∴,∴…,∴,故答案為.本題考查了二次函數(shù)圖象上點的坐標特征、一次函數(shù)的圖象以及交點的坐標,根據(jù)坐標的變化找出變化規(guī)律是解題的關鍵.12、1【分析】根據(jù)紅球的概率結合概率公式列出關于n的方程,求出n的值即可【詳解】解:∵摸到紅球的概率為∴解得n=1.
故答案為:1.本題考查概率的求法與運用,根據(jù)概率公式求解即可:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率13、1【分析】由相似三角形的面積比得到相似比,再根據(jù)AB即可求得A'B'的長.【詳解】解:∵△ABC∽△A'B'C',且S△ABC:S△A'B''C'=1:1,∴AB:A′B′=1:2,∵AB=2,∴A′B′=1.故答案為1.此題考查相似三角形的性質,相似三角形的面積的比等于相似比的平方.14、①④【分析】①按照圓的內接三角形的定義判斷即可,三頂點都在一個圓周上的三角形,叫做這個圓周的內接三角形;②利用垂徑定理得到弧長之間的關系即可;③設OP與DE交于點M,利用垂徑定理可得DE⊥OP,DE=2ME,再利用直角三角形中斜邊長大于直角邊,找到PE與與ME的關系,進一步可以得到DE與PE的關系;④根據(jù),即可得到∠DAP=∠PAE,則AP平分∠BAC.【詳解】解:①點A、D、E三點均在⊙O上,所以△ADE是⊙O的內接三角形,此項正確;②∵DE⊥DE交⊙O于點P∴并不能證明與、關系,∴不正確;③設OP與DE交于點M∵DE⊥DE交⊙O于點P∴DE⊥OP,ME=DE(垂徑定理)∴△PME是直角三角形∴ME<PE∴<PE∴DE<2PE故此項錯誤.④∵(已證)∴∠DAP=∠PAE(同弧所對的圓周角相等)∴AP平分∠BAC.故此項正確.故正確的序號為:①④本題考查了圓中內接三角形定義、垂徑定理與圓周角定理的應用,熟練掌握定理是解決此題的關鍵.15、【分析】過點D'作D'N⊥AC于點N,作D'M⊥BC于點M,由直角三角形的性質可得BC=4cm,AB=8cm,ED=DF=6cm,由“AAS”可證△D'NE'≌△D'MF',可得D'N=D'M,即點D'在射線CD上移動,且當E'D'⊥AC時,DD'值最大,則可求點D運動的路徑長,【詳解】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm
如圖,當點E沿AC方向下滑時,得△E'D'F',過點D'作D'N⊥AC于點N,作D'M⊥BC于點M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即點E沿AC方向下滑時,點D'在射線CD上移動,∴當E'D'⊥AC時,DD'值最大,最大值=ED-CD=(12-6)cm
∴當點E從點A滑動到點C時,點D運動的路徑長=2×(12-6)=(24-12)cm本題考查了軌跡,全等三角形的判定和性質,等腰直角三角形的性質,角平分線的性質,確定點D的運動軌跡是本題的關鍵.16、①②【分析】根據(jù)表格中的數(shù)據(jù)直接得出平均數(shù)相同,再根據(jù)一中成績的中位數(shù)86>85可判斷一中優(yōu)秀人數(shù)較多,最后根據(jù)方差越大,成績波動越大判斷波動性.【詳解】由表格數(shù)據(jù)可知一中和二中的平均成績相同,故①正確;∵一中成績的中位數(shù)86>85,二中成績的中位數(shù)84<85,競賽得分85分為優(yōu)秀∴一中優(yōu)秀的人數(shù)多于二中優(yōu)秀的人數(shù)故②正確;二中的方差大于一中,則二中成績的波動比一中大,故③錯誤;故答案為:①②本題考查平均數(shù),中位數(shù)與方差,難度不大,熟練掌握基本概念是解題的關鍵.17、8π【解析】試題分析:先求得正多邊形的每一個內角,然后由弧長計算公式.解:方法一:先求出正六邊形的每一個內角==120°,所得到的三條弧的長度之和=3×=8π(cm);方法二:先求出正六邊形的每一個外角為60°,得正六邊形的每一個內角120°,每條弧的度數(shù)為120°,三條弧可拼成一整圓,其三條弧的長度之和為8πcm.故答案為8π.考點:弧長的計算;正多邊形和圓.18、1【分析】設方程的另一個根為x2,根據(jù)根與系數(shù)的關系可得出4+x2=4,解之即可得出結論.【詳解】設方程的另一個根為x2,根據(jù)題意得:4+x2=4,∴x2=1.故答案為:1.本題考查了根與系數(shù)的關系,牢記兩根之和等于、兩根之積等于是解題的關鍵.三、解答題(共66分)19、(1)線段BC的長度為4;(2)AC⊥AB,理由見解析;(3)點D的坐標為(﹣2,1)【解析】(1))解出方程后,即可求出B、C兩點的坐標,即可求出BC的長度;
(2)由A、B、C三點坐標可知OA2=OC?OB,所以可證明△AOC∽△BOA,利用對應角相等即可求出∠CAB=90°;
(3)容易求得直線AC的解析式,由DB=DC可知,點D在BC的垂直平分線上,所以D的縱坐標為1,將其代入直線AC的解析式即可求出D的坐標;【詳解】解:(1)∵x2﹣2x﹣3=0,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4,(2)∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OB?OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;(3)設直線AC的解析式為y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直線AC的解析式為:y=﹣x﹣1,∵DB=DC,∴點D在線段BC的垂直平分線上,∴D的縱坐標為1,∴把y=1代入y=﹣x﹣1,∴x=﹣2,∴D的坐標為(﹣2,1),本題考查二次函數(shù)的綜合問題,涉及一元二次方程的解法,相似三角形的判定,等腰三角形的性質,垂直平分線的判定等知識,內容較為綜合,需要學生靈活運用所知識解決.20、證明見解析.【解析】試題分析:由BC∥OP可得∠AOP=∠B,根據(jù)直徑所對的圓周角為直角可知∠C=90°,再根據(jù)切線的性質知∠OAP=90°,從而可證△ABC∽△POA.試題解析:證明:∵BC∥OP,∴∠AOP=∠B,∵AB是直徑,∴∠C=90°,∵PA是⊙O的切線,切點為A,∴∠OAP=90°,∴∠C=∠OAP,∴△ABC∽△POA.考點:1.切線的性質;2.相似三角形的判定.21、(1);(2)每件商品的銷售價應定為元或元;(3)售價定為元/件時,每天最大利潤元.【分析】(1)待定系數(shù)法求解可得;
(2)根據(jù)“每件利潤×銷售量=總利潤”列出一元二次方程,解之可得;
(3)根據(jù)以上相等關系列出函數(shù)解析式,配方成頂點式,利用二次函數(shù)性質求解可得.【詳解】(1)設與之間的函數(shù)關系式為,
由所給函數(shù)圖象可知:
,
解得:.
故與的函數(shù)關系式為;(2)根據(jù)題意,得:,
整理,得:,
解得:或,
答:每件商品的銷售價應定為元或元;(3)∵,
∴
,
∴當時,,
∴售價定為元/件時,每天最大利潤元.本題主要考查二次函數(shù)的應用,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式,理解題意確定相等關系,并據(jù)此列出函數(shù)解析式.22、-1【分析】將,代入計算即可得到答案.【詳解】=-4+1+,=-3+2,=-1.此題考查實數(shù)的混合計算,熟記特殊角度的三角函數(shù)值,掌握正確的計算順序是解題的關鍵.23、(2)y=﹣x2+2x+2;(2)點P的坐標為(0,2+);(2)MD2=n2﹣n+3;點M的坐標為(,)或(,).【分析】(2)根據(jù)點A,B的坐標,利用待定系數(shù)法即可求出拋物線的解析式;(2)過點E作EF⊥x軸于點F,根據(jù)旋轉的性質及同角的余角相等,可證出△ODP≌△FED(AAS),由拋物線的解析式可得出點D的坐標,進而可得出OD的長度,利用全等三角形的性質可得出EF的長度,再利用二次函數(shù)圖象上點的坐標特征可求出DF,OP的長,結合點P在y軸正半軸即可得出點P的坐標;(2)利用二次函數(shù)圖象上點的坐標特征可得出m2﹣2m=2﹣n,根據(jù)點D,M的坐標,利用兩點間的距離公式可得出MD2=n2﹣n+3,利用配方法可得出當MD2取得最小值時n的值,再利用二次函數(shù)圖象上點的坐標特征即可求出當MD2取得最小值時點M的坐標.【詳解】(2)將A(﹣2,0),B(2,0)代入y=ax2+bx+2,得:,解得:,∴拋物線的解析式為y=﹣x2+2x+2.(2)過點E作EF⊥x軸于點F,如圖所示.∵∠OPD+∠ODP=90°,∠ODP+∠FDE=90°,∴∠OPD=∠FDE.在△ODP和△FED中,,∴△ODP≌△FED(AAS),∴DF=OP,EF=DO.∵拋物線的解析式為y=﹣x2+2x+2=﹣(x﹣2)2+3,∴點D的坐標為(2,0),∴EF=DO=2.當y=2時,﹣x2+2x+2=2,解得:x2=2﹣(舍去),x2=2+,∴DF=OP=2+,∴點P的坐標為(0,2+).(2)∵點M(m,n)是拋物線上的一個動點,∴n=﹣m2+2m+2,∴m2﹣2m=2﹣n.∵點D的坐標為(2,0),∴MD2=(m﹣2)2+(n﹣0)2=m2﹣2m+2+n2=2﹣n+2+n2=n2﹣n+3.∵n2﹣n+3=(n﹣)2+,∴當n=時,MD2取得最小值,此時﹣m2+2m+2=,解得:m2=,m2=.∴MD2=n2﹣n+3,當MD2取得最小值時,點M的坐標為(,)或(,).本題考查了待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)圖象上點的坐標特征、全等三角形的判定與性質、二次函數(shù)的最值以及兩點間的距離公式,解題的關鍵是:(2)根據(jù)點的坐標,利用待定系數(shù)法求出二次函數(shù)解析式;(2)利用全等三角形的性質及二次函數(shù)圖象上點的坐標特征求出OP的長;(2)利用兩點間的距離公式結合二次函數(shù)圖象上點的坐標特征,找出MD2=n2﹣n+3.24、(1)詳見解析;(2)詳見解析;(3)的周長與m值無關,理由詳見解析.【分析】(1)由直角梯形ABCD中∠A為直角,得到三角形ADE為直角三角形,可得出兩銳角互余,再由DE與EC垂直,利用垂直的定義得到∠DEC為直角,利用平角的定義推出一對角互余,利用同角的余角相等可得出一對角相等,再由一對直角相等,利用兩對對應角相等的兩三角形相似可得證;(2)延長DE、CB交于F,證明△ADE≌△BFE,根據(jù)全等三角形的性質得到DE=FE,AD=BF由CE⊥DE,得到直線CE是線段DF的垂直平分線,由線段垂直平分線的性質得DC=FC.即可得到結論;(3)△BEC的周長與m的值無關,理由為:設AD=x,由AD+DE=a,表示出DE.在直角三角形ADE中,利用勾股定理列出關系式,整理后記作①,由AB﹣AE=EB,表示出BE,根據(jù)(1)得到:△ADE∽△BEC,由相似得比例,將各自表示出的式子代入,表示出BC與EC,由EB+EC+BC表示出三角形EBC的周長,提取a﹣m后,通分并利用同分母分式的加法法則計算,再利用平方差公式化簡后,記作②,將①代入②,約分后得到一個不含m的式子,即周長與m無關.【詳解】(1)∵直角梯形ABCD中,∠A=90°,∴∠ADE+∠AED=90°,又∵DE⊥CE,∴∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,又∵∠A=∠B=90°,∴△ADE∽△BEC;(2)延長DE、CB交于F,如圖2所示.∵AD∥BC,∴∠A=∠EBF,∠ADE=∠F.∵E是AB的中點,∴AE=BE.在△ADE和△BFE中,∵∠A=∠EBF,∠ADE=∠F,AE=BE,∴△ADE≌△BFE,∴DE=FE,AD=BF.∵CE⊥DE,∴直線CE是線段DF的垂直平分線,∴DC=FC.∵FC=BC+BF=BC+AD,∴AD+BC=CD.(3)△BEC的周長與m的值無關,理由為:設AD=x,由AD+DE=AB=a,得:DE=a﹣x.在Rt△AED中,根據(jù)勾股定理得:AD2+AE2=DE2,即x2+m2=(a﹣x)2,整理得:a2﹣m2=2ax,…①在△EBC中,由AE=m,AB=a,得:BE=AB﹣AE=a﹣m.∵由(1)知△ADE∽△BEC,∴,即,解得:BC,EC,∴△BEC的周長=BE+BC+EC=(a﹣m)=(a﹣m)(1)=(a﹣m)?,…②把①代入②得:△BEC的周長=BE+BC+EC2a,則△BEC的周長與m無關.本題是相似形綜合題,涉及的知識有:相似三角形的判定與性質,勾股定理,平行線的判定與性質,分式的化簡求值,利用了轉化及整體代入的數(shù)學思想,做第三問時注意利用已證的結論.25、(1)證明見解析;(2)AT=8;(3)170°或者10°.【分析】(1)欲證明AP=BP′,只要證明△AOP≌△BOP′即可;
(2)在Rt△ATO中,利用勾股定理計算即可;(3)當OQ⊥OA時,△AOQ面積最大,且左右兩半弧上各存在一點分別求出即可.【詳解】解:(1)證明:∵∠AOB=∠POP′=80°∴∠AOB+∠BOP=∠POP′+∠BOP即∠AOP=∠BOP′在△AOP與△BOP′中,∴△AOP≌△BOP′(SAS),∴AP=BP′;(2)∵AT與弧相切,連結OT,∴OT⊥AT在Rt△AOT中,根據(jù)勾股定理,AT=∵OA=10,OT=6,∴AT=8;(3)解:如圖,當OQ⊥OA時,△AOQ的面積最大;
理由是:當Q點在優(yōu)弧MN左側上,∵OQ⊥OA,
∴QO是△AOQ中最長的高,則△AOQ的面積最大,
∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,
當Q點在優(yōu)弧MN右側上,
∵OQ⊥OA,
∴QO是△AOQ中最長的高,則△AOQ的面積最大,
∴∠BOQ=∠AOQ-∠AOB=90°-80°=10°,
綜上所述:當∠BOQ的度數(shù)為10°或170°時,△AOQ的面積最大.本題考查切線的性質、等腰三角形的性質、勾股定理、全等三角形的判定和性質、旋轉變換等知識,解題的關鍵是正確尋找全等三角形,根據(jù)數(shù)形結合進行分類討論.26、(1)y=x2+2x﹣3;(2)①(﹣,),②(﹣-1,2)或(,)或(-1,-4)【分析】(1)直接用待定系數(shù)法求解即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年長春市各縣(市)區(qū)事業(yè)單位公開招聘上半年入伍高校畢業(yè)生第1號備考題庫補充備考題庫及答案詳解1套
- 2026廣東廣州開發(fā)區(qū)統(tǒng)計局(廣州市黃埔區(qū)統(tǒng)計局)招聘市商業(yè)調查隊隊員1人備考題庫及完整答案詳解一套
- 2026年春季四川省南充精神衛(wèi)生中心護理崗編外招聘18名備考題庫及一套參考答案詳解
- 2026云南迪慶州德欽縣政協(xié)招聘公益性崗位人員2人備考題庫及1套參考答案詳解
- 風險事件分類模型
- 商業(yè)辦公樓節(jié)能改造技術方案
- 建筑項目經(jīng)理崗位職責清單
- 現(xiàn)代農業(yè)機械采購與管理方案
- 教師教學經(jīng)驗交流會總結及心得體會
- 連鎖超市庫存管理系統(tǒng)使用方案
- 膀胱全切回腸代膀胱護理
- 公司個人征信合同申請表
- 示波器說明書
- 談心談話記錄100條范文(6篇)
- 大九九乘法口訣表(可下載打印)
- 微電影投資合作協(xié)議書
- 壓鑄鋁合金熔煉改善
- 排水管道溝槽土方開挖專項方案
- GB/T 5277-1985緊固件螺栓和螺釘通孔
- GB/T 32451-2015航天項目管理
- GB/T 12229-2005通用閥門碳素鋼鑄件技術條件
評論
0/150
提交評論