版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
深圳深圳市羅湖外語學校八年級上冊壓軸題數(shù)學模擬試卷及答案一、壓軸題1.已知ABC,P是平面內任意一點(A、B、C、P中任意三點都不在同一直線上).連接PB、PC,設∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y(tǒng)°.(1)如圖,當點P在ABC內時,①若y=70,s=10,t=20,則x=;②探究s、t、x、y之間的數(shù)量關系,并證明你得到的結論.(2)當點P在ABC外時,直接寫出s、t、x、y之間所有可能的數(shù)量關系,并畫出相應的圖形.2.如圖,中,,,點為射線上一動點,連結,作且.(1)如圖1,過點作交于點,求證:;(2)如圖2,連結交于點,若,,求證:點為中點.(3)當點在射線上,連結與直線交于點,若,,則______.(直接寫出結果)3.某校八年級數(shù)學興趣小組對“三角形內角或外角平分線的夾角與第三個內角的數(shù)量關系”進行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點Q,請你寫出∠BQC與∠A的數(shù)量關系,并證明.4.直角三角形中,,直線過點.(1)當時,如圖1,分別過點和作直線于點,直線于點,與是否全等,并說明理由;(2)當,時,如圖2,點與點關于直線對稱,連接,點是上一點,點是上一點,分別過點作直線于點,直線于點,點從點出發(fā),以每秒的速度沿路徑運動,終點為,點從點出發(fā),以每秒的速度沿路徑運動,終點為,點同時開始運動,各自達到相應的終點時停止運動,設運動時間為秒,當為等腰直角三角形時,求的值.5.在《經典幾何圖形的研究與變式》一課中,龐老師出示了一個問題:“如圖1,等腰直角三角形的三個頂點分別落在三條等距的平行線,,上,,且每兩條平行線之間的距離為1,求AB的長度”.在研究這道題的解法和變式的過程中,同學們提出了很多想法:(1)小明說:我只需要過B、C向作垂線,就能利用全等三角形的知識求出AB的長.(2)小林說:“我們可以改變的形狀.如圖2,,,且每兩條平行線之間的距離為1,求AB的長.”(3)小謝說:“我們除了改變的形狀,還能改變平行線之間的距離.如圖3,等邊三角形ABC三個頂點分別落在三條平行線,,上,且與之間的距離為1,與之間的距離為2,求AB的長、”請你根據(jù)3位同學的提示,分別求出三種情況下AB的長度.6.在等腰中,,為邊上的高,點在的外部且,,連接交直線于點,連接.(1)如圖①,當時,求證:;(2)如圖②,當時,求的度數(shù);(3)如圖③,當時,求證:.7.如圖,在等邊中,線段為邊上的中線.動點在直線上時,以為一邊在的下方作等邊,連結.(1)求的度數(shù);(2)若點在線段上時,求證:;(3)當動點在直線上時,設直線與直線的交點為,試判斷是否為定值?并說明理由.8.已知:中,過B點作BE⊥AD,.(1)如圖1,點在的延長線上,連,作于,交于點.求證:;(2)如圖2,點在線段上,連,過作,且,連交于,連,問與有何數(shù)量關系,并加以證明;(3)如圖3,點在CB延長線上,且,連接、的延長線交于點,若,請直接寫出的值.9.如圖,在平面直角坐標系中,,,,點、在軸上且關于軸對稱.(1)求點的坐標;(2)動點以每秒2個單位長度的速度從點出發(fā)沿軸正方向向終點運動,設運動時間為秒,點到直線的距離的長為,求與的關系式;(3)在(2)的條件下,當點到的距離為時,連接,作的平分線分別交、于點、,求的長.10.(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點A、D、E在同一直線上,連接BE.①請直接寫出∠AEB的度數(shù)為_____;②試猜想線段AD與線段BE有怎樣的數(shù)量關系,并證明;(2)拓展探究:圖2,△ACB和△DCE均為等腰三角形,∠ACB=∠DCE=90°,點A、D、E在同-直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)線段CM、AE、BE之間的數(shù)量關系,并說明理由.11.(1)在等邊三角形ABC中,①如圖①,D,E分別是邊AC,AB上的點且AE=CD,BD與EC交于點F,則∠BFE的度數(shù)是度;②如圖②,D,E分別是邊AC,BA延長線上的點且AE=CD,BD與EC的延長線交于點F,此時∠BFE的度數(shù)是度;(2)如圖③,在△ABC中,AC=BC,∠ACB是銳角,點O是AC邊的垂直平分線與BC的交點,點D,E分別在AC,OA的延長線上,AE=CD,BD與EC的延長線交于點F,若∠ACB=α,求∠BFE的大?。ㄓ煤恋拇鷶?shù)式表示).12.Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點P在線段AB上,如圖(1)所示,且∠α=60°,則∠1+∠2=;(2)若點P在線段AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關系為;(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關系?猜想并說明理由;(4)若點P運動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間有何關系?猜想并說明理由.13.如圖1,我們定義:在四邊形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,則把四邊形ABCD叫做互補等對邊四邊形.(1)如圖2,在等腰中,AE=BE,四邊形ABCD是互補等對邊四邊形,求證:∠ABD=∠BAC=∠AEB.(2)如圖3,在非等腰中,若四邊形ABCD仍是互補等對邊四邊形,試問∠ABD=∠BAC=∠AEB是否仍然成立?若成立,請加以證明;若不成立,請說明理由.14.(閱讀材料):(1)在中,若,由“三角形內角和為180°”得.(2)在中,若,由“三角形內角和為180°”得.(解決問題):如圖①,在平面直角坐標系中,點C是x軸負半軸上的一個動點.已知軸,交y軸于點E,連接CE,CF是∠ECO的角平分線,交AB于點F,交y軸于點D.過E點作EM平分∠CEB,交CF于點M.(1)試判斷EM與CF的位置關系,并說明理由;(2)如圖②,過E點作PE⊥CE,交CF于點P.求證:∠EPC=∠EDP;(3)在(2)的基礎上,作EN平分∠AEP,交OC于點N,如圖③.請問隨著C點的運動,∠NEM的度數(shù)是否發(fā)生變化?若不變,求出其值:若變化,請說明理由.15.如圖,在中,為的中點,,.動點從點出發(fā),沿方向以的速度向點運動;同時動點從點出發(fā),沿方向以的速度向點運動,運動時間是.(1)在運動過程中,當點位于線段的垂直平分線上時,求出的值;(2)在運動過程中,當時,求出的值;(3)是否存在某一時刻,使?若存在,求出的值;若不存在,請說明理由.16.閱讀材料并完成習題:在數(shù)學中,我們會用“截長補短”的方法來構造全等三角形解決問題.請看這個例題:如圖1,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四邊形ABCD的面積.解:延長線段CB到E,使得BE=CD,連接AE,我們可以證明△BAE≌△DAC,根據(jù)全等三角形的性質得AE=AC=2,∠EAB=∠CAD,則∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四邊形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,這樣,四邊形ABCD的面積就轉化為等腰直角三角形EAC面積.(1)根據(jù)上面的思路,我們可以求得四邊形ABCD的面積為cm2.(2)請你用上面學到的方法完成下面的習題.如圖2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五邊形FGHMN的面積.17.探究發(fā)現(xiàn):如圖①,在中,內角的平分線與外角的平分線相交于點.(1)若,則;若,則;(2)由此猜想:與的關系為(不必說明理由).拓展延伸:如圖②,四邊形的內角與外角的平分線相交于點,.(3)若,,求的度數(shù),由此猜想與,之間的關系,并說明理由.18.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當點在上時,求度數(shù);(3)將在直線上平移,當以為頂點的三角形是直角三角形時,直接寫出度數(shù).19.已知ABCD,點E是平面內一點,∠CDE的角平分線與∠ABE的角平分線交于點F.(1)若點E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關系并證明你的結論;(2)若點E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關系式是.(3)若點E的位置如圖3所示,∠CDE為銳角,且,設∠F=α,則α的取值范圍為.20.請按照研究問題的步驟依次完成任務.(問題背景)(1)如圖1的圖形我們把它稱為“8字形”,請說理證明∠A+∠B=∠C+∠D.(簡單應用)(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(shù)(可直接使用問題(1)中的結論)(問題探究)(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度數(shù)為;(拓展延伸)(4)在圖4中,若設∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關系為(用x、y表示∠P);(5)在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、D的關系,直接寫出結論.【參考答案】***試卷處理標記,請不要刪除一、壓軸題1.(1)①100;②x=y+s+t;(2)見詳解.【解析】【分析】(1)①利用三角形的內角和定理即可解決問題;②結論:x=y+s+t.利用三角形內角和定理即可證明;(2)分6種情形分別求解即可解決問題.【詳解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案為:100.②結論:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之間所有可能的數(shù)量關系:如圖1:s+x=t+y;如圖2:s+y=t+x;如圖3:y=x+s+t;如圖4:x+y+s+t=360°;如圖5:t=s+x+y;如圖6:s=t+x+y;【點睛】本題考查三角形的內角和定理,三角形的外角的性質等知識,解題的關鍵是學會用分類討論的思想思考問題.2.(1)見解析;(2)見解析;(3)或【解析】【分析】(1)證明△AFD≌△EAC,根據(jù)全等三角形的性質得到DF=AC,等量代換證明結論;(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長,得到答案;(3)過F作FD⊥AG的延長線交于點D,根據(jù)全等三角形的性質得到CG=GD,AD=CE=7,代入計算即可.【詳解】解:(1)證明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,F(xiàn)D=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E點為BC中點;(3)當點E在CB的延長線上時,過F作FD⊥AG的延長線交于點D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴,同理,當點E在線段BC上時,,故答案為:或.【點睛】本題考查的是全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.3.(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,證明見解析【解析】【分析】(1)根據(jù)三角形的內角和化為角平分線的定義;(2)根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和,用∠A與∠1表示出∠2,再利用∠E與∠1表示出∠2,于是得到結論;(3)根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和以及角平分線的定義表示出∠EBC與∠ECB,然后再根據(jù)三角形的內角和定理列式整理即可得解.【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結論:.【點睛】本題考查了三角形的外角性質與內角和定理,熟記三角形的一個外角等于與它不相鄰的兩個內角的和是解題的關鍵.4.(1)全等,理由見解析;(2)t=3.5秒或5秒【解析】【分析】(1)根據(jù)垂直的定義得到∠DAC=∠ECB,利用AAS定理證明△ACD≌△CBE;(2)分點F沿C→B路徑運動和點F沿B→C路徑運動兩種情況,根據(jù)等腰三角形的定義列出算式,計算即可;【詳解】解:(1)△ACD與△CBE全等.理由如下:∵AD⊥直線l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)由題意得,AM=t,F(xiàn)N=3t,則CM=8-t,由折疊的性質可知,CF=CB=6,∴CN=6-3t,點N在BC上時,△CMN為等腰直角三角形,當點N沿C→B路徑運動時,由題意得,8-t=3t-6,解得,t=3.5,當點N沿B→C路徑運動時,由題意得,8-t=18-3t,解得,t=5,綜上所述,當t=3.5秒或5秒時,△CMN為等腰直角三角形;【點睛】本題考查的是全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理,靈活運用分情況討論思想是解題的關鍵.5.(1);(2);(3)【解析】【分析】(1)分別過點B,C向l1作垂線,交l1于M,N兩點,證明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分別過點B,C向l1作垂線,交l1于點P,Q兩點,在l1上取M,N使∠AMB=∠CNA=120°,證明△AMB≌△CAN,得到CN=AM,再通過△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的長;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,過B作l3的垂線,交l3于點P,過A作l3的垂線,交l3于點Q,證明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,從而得到PC,結合BP算出BC的長,即為AB.【詳解】解:(1)如圖,分別過點B,C向l1作垂線,交l1于M,N兩點,由題意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=;(2)分別過點B,C向l1作垂線,交l1于P,Q兩點,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,,∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=BM,NQ=NC,∵PB=1,CQ=2,設PM=a,NQ=b,∴,,解得:,,∴CN=AM==,∴AB===;(3)如圖,在l3上找M和N,使得∠BNC=∠AMC=60°,過B作l3的垂線,交于點P,過A作l3的垂線,交于點Q,∵△ABC是等邊三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,,∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,,即,解得:NP=,∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,,即,解得:QM=,∴AM==CN,∴PC=CN-NP=AM-NP=,在△BPC中,BP2+CP2=BC2,即BC=,∴AB=BC=.【點睛】本題考查了全等三角形的判定和性質,平行線之間的距離,等腰三角形的性質,等邊三角形的性質以及勾股定理,解題的關鍵是利用平行線構造全等三角形,再利用全等三角形的性質以及勾股定理求解.6.(1)見解析;(2);(3)見解析【解析】【分析】(1)根據(jù)等腰三角形三線合一的性質,可得AE垂直平分BC,F(xiàn)為垂直平分線AE上點,即可得出結論;(2)根據(jù)(1)的結論可得AE平分∠BAC,∠BAF=20°,由AB=AC=AD,推出,根據(jù)外角性質可得計算即可;(3)在CF上截取CM=DF,連接AM,證明△ACM≌△ADF(SAS),進而證得△AFM為等邊三角形即可.【詳解】(1)證明:∵AE為等腰△ABC底邊BC上的高線,AB=AC,,∠AEB=∠AEC=90°,BE=CE,∴AE垂直平分BE,F(xiàn)在AE上,;(2),,,,由(1)知,AE平分∠BAC,,,故答案為:60°;(3)在CF上截取CM=DF,連接AM,由(1)可知,∠ABC=∠ACB,∠FBC=∠FCB,,,,,在△ACM和△ADF中,∴△ACM≌△ADF(SAS),,,∴△AFM為等邊三角形,,.【點睛】本題考查了等腰三角形的性質,垂直平分線的性質,三角形全等的判定和性質,等邊三角形的判定和性質,掌握三角形全等的判定和性質是解題的關鍵.7.(1)30°;(2)證明見解析;(3)是定值,.【解析】【分析】(1)根據(jù)等邊三角形的性質可以直接得出結論;(2)根據(jù)等邊三角形的性質就可以得出,,,,由等式的性質就可以,根據(jù)就可以得出;(3)分情況討論:當點在線段上時,如圖1,由(2)可知,就可以求出結論;當點在線段的延長線上時,如圖2,可以得出而有而得出結論;當點在線段的延長線上時,如圖3,通過得出同樣可以得出結論.【詳解】(1)是等邊三角形,.線段為邊上的中線,,.(2)與都是等邊三角形,,,,,.在和中,;(3)是定值,,理由如下:①當點在線段上時,如圖1,由(2)可知,則,又,,是等邊三角形,線段為邊上的中線平分,即.②當點在線段的延長線上時,如圖2,與都是等邊三角形,,,,,,在和中,,,同理可得:,.③當點在線段的延長線上時,與都是等邊三角形,,,,,,在和中,,,同理可得:,∵,.綜上,當動點在直線上時,是定值,.【點睛】此題考查等邊三角形的性質,全等三角形的判定及性質,等邊三角形三線合一的性質,解題中注意分類討論的思想解題.8.(1)見詳解,(2),證明見詳解,(3).【解析】【分析】(1)欲證明,只要證明即可;(2)結論:.如圖2中,作于.只要證明,推出,,由,推出即可解決問題;(3)利用(2)中結論即可解決問題;【詳解】(1)證明:如圖1中,于,,,,,(AAS),.(2)結論:.理由:如圖2中,作于.,,,,,,,,,,,,,,,.(3)如圖3中,作于交AC延長線于.,,,,,,,,,,,,,,,.,設,則,,.【點睛】本題考查三角形綜合題、全等三角形的判定和性質、等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考壓軸題.另外對于類似連續(xù)幾步的綜合題,一般前一步為后一步提供解題的條件或方法.9.(1)C(4,0);(2);(3).【解析】【分析】(1)根據(jù)對稱的性質知為等邊三角形,利用直角三角形中30度角的性質即可求得答案;(2)利用面積法可求得,再利用坐標系中點的特征即可求得答案;(3)利用(2)的結論求得,利用角平分線的性質證得,求得,利用面積法求得,再利用直角三角形中30度角的性質即可求得答案.【詳解】(1)∵點、關于軸對稱,∴,∴,∵,∴為等邊三角形,∴,∴,∴點C的坐標為:;(2)連接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵點到的距離為,∴,∴,∴,延長交于點,過點作軸于點,連接、,∵為的角平分線,為等邊三角形,∴,,∵,,∴,∴,設,在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【點睛】本題是三角形綜合題,涉及的知識有:含30度直角三角形的性質,全等三角形的判定與性質,外角性質,角平分線的性質,等邊三角形的判定和性質,坐標與圖形性質,熟練掌握性質及定理、靈活運用面積法求線段的長是解本題的關鍵.10.(1)①60°;②AD=BE.證明見解析;(2)∠AEB=90°;AE=2CM+BE;理由見解析.【解析】【分析】(1)①由條件△ACB和△DCE均為等邊三角形,易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).②由△ACD≌△BCE,可得AD=BE;(2)首先根據(jù)△ACB和△DCE均為等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,據(jù)此判斷出∠ACD=∠BCE;然后根據(jù)全等三角形的判定方法,判斷出△ACD≌△BCE,即可判斷出BE=AD,∠BEC=∠ADC,進而判斷出∠AEB的度數(shù)為90°;根據(jù)DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,據(jù)此判斷出AE=BE+2CM.【詳解】(1)①∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠CEB=∠ADC=180°?∠CDE=120°,∴∠AEB=∠CEB?∠CED=60°;②AD=BE.證明:∵△ACD≌△BCE,∴AD=BE.(2)∠AEB=90°;AE=2CM+BE;理由如下:∵△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB=∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°.在等腰直角△DCE中,CM為斜邊DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE.【點睛】本題考查了等邊三角形的性質、等腰直角三角形的性質、三角形全等的判定與性質等知識,解題時需注意運用已有的知識和經驗解決相似問題.11.(1)①60°;②60°;(2)∠BFE=α.【解析】【分析】(1)①先證明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先證明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)證明△AEC≌△CDB得到∠E=∠D,則∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【詳解】(1)如圖①中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案為60.(2)如圖②中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案為60.(3)如圖③中,∵點O是AC邊的垂直平分線與BC的交點,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【點睛】本題綜合考查了三角形全等以及三角形外角和定理.12.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由詳見解析;(4)∠2=90°+∠1-α,理由詳見解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四邊形的內角和即可;(2)同(1)方法即可;(3)利用平角的定義和三角形的內角和即可得出結論;(4)利用三角形的內角和和外角的性質即可得出結論.【詳解】解:(1)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根據(jù)四邊形的內角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案為:150;(2)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根據(jù)四邊形的內角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案為:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如圖3,設DP與BE的交點為F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如圖4,設PE與AC的交點為G,∵∠PGD=∠EGC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α.【點睛】此題是三角形綜合題,主要考查了四邊形的內角和,三角形的內角和,三角形的外角的性質,平角的定義,解本題的關鍵是將∠1,∠2,α轉化到一個三角形或四邊形中,是一道比較簡單的中考??碱}.13.(1)見解析;(2)仍然成立,見解析【解析】【分析】(1)根據(jù)等腰三角形的性質和互補等對邊四邊形的定義可利用SAS證明△ABD≌△BAC,可得∠ADB=∠BCA,從而可推出∠ADB=∠BCA=90°,然后在△ABE中,根據(jù)三角形的內角和定理和直角三角形的性質可得∠ABD=∠AEB,進一步可得結論;(2)如圖3所示:過點A、B分別作BD的延長線與AC的垂線,垂足分別為G,F(xiàn),根據(jù)互補等對邊四邊形的定義可利用AAS證明△AGD≌△BFC,可得AG=BF,進一步即可根據(jù)HL證明Rt△ABG≌Rt△BAF,可得∠ABD=∠BAC,由互補等對邊四邊形的定義、平角的定義和四邊形的內角和可得∠AEB+∠DHC=180°,進而可得∠AEB=∠BHC,再根據(jù)三角形的外角性質即可推出結論.【詳解】(1)證明:∵AE=BE,∴∠EAB=∠EBA,∵四邊形ABCD是互補等對邊四邊形,∴AD=BC,在△ABD和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA=(180°?∠AEB)=90°?∠AEB,∴∠ABD=90°?∠EAB=90°?(90°?∠AEB)=∠AEB,同理:∠BAC=∠AEB,∴∠ABD=∠BAC=∠AEB;(2)∠ABD=∠BAC=∠AEB仍然成立;理由如下:如圖3所示:過點A、B分別作BD的延長線與AC的垂線,垂足分別為G,F(xiàn),∵四邊形ABCD是互補等對邊四邊形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+∠ADG=180°,∴∠BCA=∠ADG,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD和△BFC中,∠AGD=∠BFC,∠ADG=∠BCA,AD=BC∴△AGD≌△BFC(AAS),∴AG=BF,在Rt△ABG和Rt△BAF中,∴Rt△ABG≌Rt△BAF(HL),∴∠ABD=∠BAC,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC.∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,∴∠ABD=∠BAC=∠AEB.【點睛】本題以新定義互補等對邊四邊形為載體,主要考查了全等三角形的判定與性質、等腰三角形的性質、三角形的內角和定理與三角形的外角性質以及四邊形的內角和等知識,正確添加輔助線、熟練掌握上述知識是解題的關鍵.14.(1)EM⊥CF,理由見解析;(2)證明見解析;(3)不變,且∠NEM=45°,理由見解析.【解析】【分析】(1)EM⊥CF,分別利用角平分線的性質、平行線的性質、三角形的內角和定理進行求證即可;(2)根據(jù)垂直定義和三角形的內角和定理證得∠DCO+∠CDO=90°,∠ECP+∠EPC=90°,再利用等角的余角相等和對頂角相等即可證得結論;(3)不變,且∠NEM=45°,先利用平行線的性質得到∠AEC=∠ECO=2∠ECP,進而有∠AEP=∠CEP+∠AEC=90°+2∠ECP,再由角平分線的定義∠NEP=∠AEN=45°+∠ECP,再根據(jù)同角的余角相等得到∠ECP=∠MEP,然后等量代換證得∠NEM=45°,是定值.【詳解】解:(1)EM⊥CF,理由如下:∵CF平分∠ECO,EM平分∠FEC,∴∠ECF=∠FCO=,∠FEM=∠CEM=∵AB∥x軸∴∠ECO+∠CEF=180°∴∠EMC=180°-(∠CEM+∠ECF)=180°-90°=90°∴EM⊥CF(2)由題得,∠EOC=90°∴∠DCO+∠CDO=180°-∠EOC=180°-90°=90°∵PE⊥CE∴∠CEP=90°∴∠ECP+∠EPC=180°-∠CEP=180°-90°=90°∵∠DCO=∠ECP∴∠CDO=∠EPC又∵∠CDO=∠EDP∴∠EPC=∠EDP(3)不變,且∠NEM=45°,理由如下:∵AB∥x軸∴∠AEC=∠ECO=2∠ECP∴∠AEP=∠CEP+∠AEC=90°+2∠ECP∵EN平分∠AEP∴∠NEP=∠AEN===45°+∠ECP∵∠CEP=90°∴∠ECP+∠EPC=90°又∵∠EMC=90°∴∠MEP+∠EPC=90°∴∠ECP=∠MEP∴∠NEP=∠NEM+∠MEP=∠NEM+∠ECP又∵∠NEP=45°+∠ECP∴∠NEM=45°.【點睛】本題是一道綜合探究題,涉及有平行線的性質、角平分線的定義、三角形的內角和定理、同(等)角的余角相等、對頂角相等、垂線性質等知識,解答的關鍵是認真審題,結合圖形,尋找相關聯(lián)信息,確定解題思路,進而探究、推理、論證.15.(1)時,點位于線段的垂直平分線上;(2);(3)不存在,理由見解析.【解析】【分析】(1)根據(jù)題意求出BP,CQ,結合圖形用含t的代數(shù)式表示CP的長度,根據(jù)線段垂直平分線的性質得到CP=CQ,列式計算即可;(2)根據(jù)全等三角形的對應邊相等列式計算;(3)根據(jù)全等三角形的對應邊相等列式計算,判斷即可.【詳解】解:(1)由題意得,則,當點位于線段的垂直平分線上時,,∴,解得,,則當時,點位于線段的垂直平分線上;(2)∵為的中點,,∴,∵,∴,∴,解得,,則當時,;(3)不存在,∵,∴,則解得,,,∴不存在某一時刻,使.【點睛】本題考查的是幾何動點運動問題、全等三角形的性質、線段垂直平分線的性質、等腰三角形的性質,掌握全等三角形的對應邊相等是解題的關鍵.16.(1)2;(2)4【解析】【分析】(1)根據(jù)題意可直接求等腰直角三角形EAC的面積即可;(2)延長MN到K,使NK=GH,連接FK、FH、FM,由(1)易證,則有FK=FH,因為HM=GH+MN易證,故可求解.【詳解】(1)由題意知,故答案為2;(2)延長MN到K,使NK=GH,連接FK、FH、FM,如圖所示:FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∠FNK=∠FGH=90°,,F(xiàn)H=FK,又FM=FM,HM=KM=MN+GH=MN+NK,,MK=FN=2cm,.【點睛】本題主要考查全等三角形的性質與判定,關鍵是根據(jù)截長補短法及割補法求面積的運用.17.(1)40°25°;(2)(或)(3)=【解析】【分析】(1)先根據(jù)兩角平分線寫出對應的等式關系,再分別寫出兩個三角形內角和的等式關系,最后聯(lián)立兩等式化解,將的角度帶入即可求解;(2)由(1)可得,即可求解;(3)在與的平分線相交于點,可知,又因為,兩直線平行內錯角相等,得出,再根據(jù)三角形一外角等于不相鄰的兩個內角的和,得出,再由四邊形的內角和定理得出,最后在中:,代入整理即可得出結論.【詳解】解:(1)由題可知:BE為的角平分線,CE為的角平分線,=2=2,=2,,三角形內角和等于,在中:,即:,①,在中:,即:,②,綜上所述聯(lián)立①②,由①-②×2可得:,,,,當,則;當,則;故答案為,;(2)由(1)知:(或);(3)∵與的平分線相交于點,∴,,又∵,∴(兩直線平行,內錯角相等),∵是的一個外角,∴(三角形一外角等于不相鄰的兩個內角的和),在四邊形中,四邊形內角和為,,,∴,∴①,∴,即,在中:,,由上可得:,②,又∵,∴,,,由①②可得,,,.【點睛】本題主要考查了三角形的外角性質的應用和角平分線的定義,能正確運用性質進行推理和計算是解此題的關鍵,注意三角形的一個外角等于和它不相鄰的兩個內角的和.18.(1)60°;(2)15°;(3)30°或15°【解析】【分析】(1)利用兩直線平行,同旁內角互補,得出,即可得出結論;(2)先利用三角形的內角和定理求出,即可得出結論;(3)分和兩種情況求解即可得出結論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當時,如圖3,由(1)知,,;當時,如圖4,,點,重合,,,由(1)知,,,即當以、、為頂點的三角形是直角三角形時,度數(shù)為或.【點睛】此題是三角形綜合題,主要考查了平行線的性質,三角形的內角和定理,角的和差的計算,求出是解本題的關鍵.19.(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【解析】【分析】(1)①過F作FG//AB,利用平行線的判定和性質定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結合①的結論即可說明∠BED與∠BFD之間的數(shù)量關系;(3)通過對的計算求得,利用角平分線的定義以及三角形外角的性質求得,即可求得.【詳解】(1)①過F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 瀘州市納溪區(qū)龍車鎮(zhèn)招聘筆試真題2024
- 2025年張家港市第五人民醫(yī)院自主招聘編外合同制衛(wèi)技人員備考題庫及完整答案詳解1套
- 2025年河南鋼鐵集團數(shù)字應用研究院招聘備考題庫及參考答案詳解
- crc校驗設計課程設計
- 2025江西中贛投設計本部招聘6人【社招】考試核心題庫及答案解析
- 2025貴州安順黃果樹鎮(zhèn)人民政府招聘公益性崗位人員5人考試核心試題及答案解析
- 2025年合肥市五十中學天鵝湖教育集團望岳校區(qū)教師招聘2名備考核心題庫及答案解析
- 2025年智慧政務政務公開報告
- 2025年齊齊哈爾市泰來縣公益崗保潔人員招聘2人筆試重點題庫及答案解析
- 2025年航空發(fā)動機技術革新報告
- 肌少癥知識試題及答案
- 一年級語文試卷題目及解答
- 工地窒息事故應急處置措施
- 口腔診所的數(shù)字化管理與運營
- 中國私人診所行業(yè)投資分析、市場運行態(tài)勢研究報告-智研咨詢發(fā)布(2025版)
- T-DGGC 015-2022 盾構機組裝、調試及驗收技術標準
- 駕駛員年度安全培訓計劃
- 消防器材檢查記錄表
- 中華人民共和國建筑法
- 完整版:美制螺紋尺寸對照表(牙數(shù)、牙高、螺距、小徑、中徑外徑、鉆孔)
- AC-20C瀝青混合料生產配合比以及配合比的驗證報告
評論
0/150
提交評論