版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省蘇州大學附屬中學2025-2026學年數(shù)學高二第一學期期末學業(yè)質量監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若對任意,都有成立,則a的取值范圍為()A. B.C. D.2.已知向量,且,則的值為()A.4 B.2C.3 D.13.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待18秒才出現(xiàn)綠燈的概率為()A B.C. D.4.已知空間向量,,若,則實數(shù)的值是()A. B.0C.1 D.25.橢圓上的點P到直線x+2y-9=0的最短距離為()A. B.C. D.6.數(shù)列中,,,.當時,則n等于()A.2016 B.2017C.2018 D.20197.下面四個條件中,使成立的充分而不必要的條件是A. B.C. D.8.已知直線和直線互相垂直,則等于()A.2 B.C.0 D.9.在四棱錐中,底面ABCD是正方形,E為PD中點,若,,,則()A. B.C. D.10.設函數(shù),則()A.1 B.5C. D.011.高中生在假期參加志愿者活動,既能服務社會又能鍛煉能力.某同學計劃在福利院、社區(qū)、圖書館和醫(yī)院中任選兩個單位參加志愿者活動,則參加圖書館活動的概率為()A. B.C. D.12.直線在y軸上的截距為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若“”是“”必要不充分條件,則實數(shù)的最大值為_______14.已知點是橢圓上的一點,分別為橢圓的左、右焦點,已知=120°,且,則橢圓的離心率為___________.15.設是數(shù)列的前項和,且,則_____________.16.當曲線與直線有兩個不同的交點時,實數(shù)k的取值范圍是____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了保證我國東海油氣田海域海上平臺的生產(chǎn)安全,海事部門在某平臺O的北偏西45°方向km處設立觀測點A,在平臺O的正東方向12km處設立觀測點B,規(guī)定經(jīng)過O、A、B三點的圓以及其內部區(qū)域為安全預警區(qū).如圖所示:以O為坐標原點,O的正東方向為x軸正方向,建立平面直角坐標系(1)試寫出A,B的坐標,并求兩個觀測點A,B之間的距離;(2)某日經(jīng)觀測發(fā)現(xiàn),在該平臺O正南10kmC處,有一艘輪船正以每小時km的速度沿北偏東45°方向行駛,如果航向不變,該輪船是否會進入安全預警區(qū)?如果不進入,請說明理由;如果進入,則它在安全警示區(qū)內會行駛多長時間?18.(12分)已知橢圓:()的焦點坐標為,長軸長是短軸長的2倍(1)求橢圓的方程;(2)已知直線不過點且與橢圓交于兩點,從下面①②中選取一個作為條件,證明另一個成立.①直線的斜率分別為,則;②直線過定點.19.(12分)如圖,在四棱錐中,底面,,,,,為上一點,且.請用空間向量知識解答下列問題:(1)求證:平面;(2)求平面與平面夾角的大小.20.(12分)已知;.(1)若為真命題,求實數(shù)的取值范圍;(2)若為假命題,為真命題,求實數(shù)的取值范圍.21.(12分)有三個條件:①數(shù)列的任意相鄰兩項均不相等,,且數(shù)列為常數(shù)列,②,③,,中,從中任選一個,補充在下面橫線上,并回答問題已知數(shù)列的前n項和為,______,求數(shù)列的通項公式和前n項和22.(10分)已知過拋物線的焦點F且斜率為1的直線l交C于A,B兩點,且(1)求拋物線C的方程;(2)求以C的準線與x軸的交點D為圓心且與直線l相切的圓的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求出函數(shù)的導數(shù),再對給定不等式等價變形,分離參數(shù)借助均值不等式計算作答.【詳解】對函數(shù)求導得:,,,則,,而,當且僅當,即時“=”,于是得,解得,所以a的取值范圍為.故選:C【點睛】關鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉化,構造函數(shù),利用函數(shù)思想是解決問題的關鍵.2、A【解析】由題意可得,利用空間向量數(shù)量積的坐標表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.3、B【解析】由幾何概型公式求解即可.【詳解】紅燈持續(xù)時間為40秒,則至少需要等待18秒才出現(xiàn)綠燈的概率為,故選:B4、C【解析】根據(jù)空間向量垂直的性質進行求解即可.【詳解】因為,所以,因此有.故選:C5、A【解析】與已知直線平行,與橢圓相切的直線有二條,一條距離最短,一條距離最長,利用相切,求出直線的常數(shù)項,再計算平行線間的距離即可.【詳解】設與已知直線平行,與橢圓相切的直線為,則所以所以橢圓上點P到直線的最短距離為故選:A6、B【解析】根據(jù)已知條件用逐差法求得的通項公式,再根據(jù)裂項求和法求得,代值計算即可.【詳解】因為,,則,即,則,故,又,即,解得.故選:B.7、A【解析】由,但無法得出,A滿足;由、均無法得出,不滿足“充分”;由,不滿足“不必要”.考點:不等式性質、充分必要性.8、D【解析】利用直線垂直系數(shù)之間的關系即可得出.【詳解】解:直線和直線互相垂直,則,解得:.故選:D.9、C【解析】根據(jù)向量線性運算法則計算即可.【詳解】故選:C10、B【解析】由題意結合導數(shù)的運算可得,再由導數(shù)的概念即可得解.【詳解】由題意,所以,所以原式等于.故選:B.11、D【解析】對4個單位分別編號,利用列舉法求出概率作答.【詳解】記福利院、社區(qū)、圖書館和醫(yī)院分別為A,B,C,D,從4個單位中任選兩個的試驗有AB,AC,AD,BC,BD,CD,共6個基本事件,它們等可能,其中有參加圖書館活動的事件有AC,BC,CD,共3個基本事件,所以參加圖書館活動的概率.故選:D12、D【解析】將代入直線方程求y值即可.【詳解】令,則,得.所以直線在y軸上的截距為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設的解集為集合,由題意可得是的真子集,即可求解.【詳解】由得或,因為“”是“”的必要不充分條件,設或,,因為“”是“”的必要不充分條件,所以是的真子集,所以故答案為:【點睛】結論點睛:本題考查充分不必要條件的判斷,一般可根據(jù)如下規(guī)則判斷:(1)若是的必要不充分條件,則對應集合是對應集合的真子集;(2)是的充分不必要條件,則對應集合是對應集合的真子集;(3)是的充分必要條件,則對應集合與對應集合相等;(4)是的既不充分又不必要條件,對的集合與對應集合互不包含14、【解析】設,由余弦定理知,所以,故填.15、【解析】根據(jù)題意可知,再利用裂項相消法,即可求出結果.【詳解】因為,所以.故答案為:.16、【解析】求出直線恒過的定點,結合曲線的圖象,數(shù)形結合,找出臨界狀態(tài),即可求得的取值范圍.【詳解】因為,故可得,其表示圓心為,半徑為的圓的上半部分;因為,即,其表示過點,且斜率為的直線.在同一坐標系下作圖如下:不妨設點,直線斜率為,且過點與圓相切的直線斜率為數(shù)形結合可知:要使得曲線與直線有兩個不同的交點,只需即可.容易知:;不妨設過點與相切的直線方程為,則由直線與圓相切可得:,解得,故.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)會駛入安全預警區(qū),行駛時長為半小時【解析】(1)先求出A,B的坐標,再由距離公式得出A,B之間的距離;(2)由三點的坐標列出方程組得出經(jīng)過三點的圓的方程,設輪船航線所在的直線為,再由幾何法得出直線與圓截得的弦長,進而得出安全警示區(qū)內行駛時長.【小問1詳解】由題意得,∴;【小問2詳解】設圓的方程為,因為該圓經(jīng)過三點,∴,得到.所以該圓方程為:,化成標準方程為:.設輪船航線所在的直線為,則直線的方程為:,圓心(6,8)到直線的距離,所以直線與圓相交,即輪船會駛入安全預警區(qū).直線與圓截得的弦長為,行駛時長小時.即在安全警示區(qū)內行駛時長為半小時.18、(1)(2)證明見解析【解析】(1)由條件可得,解出即可;(2)選①證②,當直線的斜率存在時,設:,,然后聯(lián)立直線與橢圓的方程消元,然后韋達定理可得,,然后由可算出,即可證明,選②證①,設:,,然后聯(lián)立直線與橢圓的方程消元,然后韋達定理可得,,然后可算出.【小問1詳解】由條件可得,解得所以橢圓方程為【小問2詳解】選①證②:當直線的斜率存在時,設:,由得,則,由得即,即所以代入所以所以解得:(舍去),所以直線過定點當直線斜率不存在時,設:所以,由得所以,即,解得所以直線(不符合題意,舍去)綜上:直線過定點選②證①:由題意直線的斜率存在,設:由得則,所以.19、(1)證明見解析(2)【解析】(1)以為原點,、、分別為軸、軸、軸建立空間直角坐標系,證明出,,結合線面垂直的判定定理可證得結論成立;(2)利用空間向量法可求得平面與平面夾角的大小.【小問1詳解】證明:底面,,故以為原點,、、分別為軸、軸、軸建立如圖所示的空間直角坐標系,則、、、、、,所以,,,,則,,即,,又,所以,平面.【小問2詳解】解:知,,,設平面的法向量為,則,,即,令,可得,設平面的法向量為,由,,即,令,可得,,因此,平面與平面夾角的大小為.20、(1);(2).【解析】解不等式求得為真、為真分別對應的解集;(1)由為真可得全真,兩解集取交集可得結果;(2)由和的真假性可得一真一假,則分為真假和假真兩種情況求得解集.【小問1詳解】若為真,則,即,即,所以或,若為真,則,所以,因為為真命題,所以均為真命題.所以實數(shù)的取值范圍是.【小問2詳解】若為假命題,為真命題,則一真一假,若真假,則,解得或,若假真,則,解得,綜上所述,實數(shù)的取值范圍是.21、;【解析】選①,由數(shù)列為常數(shù)列可得,由此可求,根據(jù)任意相鄰兩項均不相等可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,選②由取可求,再取與原式相減可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,選③由取與原式相減可得,取可求,由此可得,故,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,【詳解】解:選①:因為,數(shù)列為常數(shù)列,所以,解得或,又因為數(shù)列的任意相鄰兩項均不相等,且,所以數(shù)列為2,-1,2,-1,2,-1……,所以,即,所以,又,所以是以為首項,公比為-1的等比數(shù)列,所以,即;所以選②:因為,易知,,所以兩式相減可得,即,以下過程與①相同;選③:由,可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 稀土后處理工班組安全測試考核試卷含答案
- 鑄管制芯工安全知識競賽評優(yōu)考核試卷含答案
- 漁船機駕長常識評優(yōu)考核試卷含答案
- 海參池塘養(yǎng)殖培訓
- 茶葉拼配師安全素養(yǎng)評優(yōu)考核試卷含答案
- 礦石破碎篩分工操作知識能力考核試卷含答案
- 橋梁工程培訓
- 老年人入住老人教育培訓制度
- 海上作業(yè)安全培訓
- 酒店客房清潔保養(yǎng)制度
- 市政設施巡查及維護方案
- 大型活動安保工作預案模板
- 2025年文化遺產(chǎn)數(shù)字化保護與開發(fā):技術創(chuàng)新與經(jīng)濟效益研究報告
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫及答案詳解參考
- 南瑞9622型6kV變壓器差動保護原理及現(xiàn)場校驗實例培訓課件
- 統(tǒng)編版(2024)七年級上冊道德與法治期末復習必背知識點考點清單
- 山西焦煤考試題目及答案
- 2026年春節(jié)放假前員工安全培訓
- (2025版)成人肺功能檢查技術進展及臨床應用指南解讀課件
- 《春秋》講解課件
- 青少年抑郁障礙的護理與康復訓練
評論
0/150
提交評論