2025-2026學(xué)年八年級數(shù)學(xué)上學(xué)期第一次月考提升卷含答案_第1頁
2025-2026學(xué)年八年級數(shù)學(xué)上學(xué)期第一次月考提升卷含答案_第2頁
2025-2026學(xué)年八年級數(shù)學(xué)上學(xué)期第一次月考提升卷含答案_第3頁
2025-2026學(xué)年八年級數(shù)學(xué)上學(xué)期第一次月考提升卷含答案_第4頁
2025-2026學(xué)年八年級數(shù)學(xué)上學(xué)期第一次月考提升卷含答案_第5頁
已閱讀5頁,還剩48頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑。1.下列各組數(shù)中,是勾股數(shù)的是() 3.在VABC中,DA,DB,DC的對邊分別是a,b,c,則下列條件中不能說明VABC是直角三角形的是()A.(a+b)(a-b)=c2B.DA=90°-DBC.a(chǎn):b:c=1:2:3D.6DA=2DB=3DC4.下列計算正確的是()A.55-22=33B.2+3=5C.VABC的面積為10A.2a+bB.-2a-cC.-b-a-cD.-3b-a+c8.直角三角形紙片的兩直角邊長分別為6,8,現(xiàn)將VABC按如圖所示方式折疊,使點(diǎn)A與點(diǎn)B重合,折痕為DE,則CE:CB的值是()9.按如圖所示的程序計算,若開始輸入的值為9,則最后輸出的y值是() 然后通過添加輔助線用面積法證明勾股定理.已知c=4,4個直角三角形未覆蓋區(qū)域即白色10,那么BC的長是() 13.若m2m+2n-5與n-1m+n都是最簡二次根式、并且是同類二次根式,則m13.若m2m+2n-5與n-1m+n都是最簡二次根式、并且是同類二次根式,則m+n=.15.如圖,在Rt△ABC中,DACB=90°,AC=6,BC=8,E為AC上一點(diǎn),且,AD平分DBAC交BC于D.若P是AD上的動點(diǎn),則PC+PE的最小值等于.(2)求x的值:2(x-2)2-18=0(1)請在網(wǎng)格中畫出格點(diǎn)三角形ABC,使AB=2(2)求VABC的面積.19.已知|a|=4,b是9的算術(shù)平方根,3c-2的立方根是-2.(2)若a>b>c,求5a+b-c的平方根.20.如圖,四邊形ABCD中,7A=90°,DFTBC,E為AB上一點(diǎn),DE=DC,7BED+7C=180°.(1)求證:AE=CF;(2)若BE=2,BC=8,求線段BF的長.21.定義:若兩個含二次根式的代數(shù)式a,b滿足ab=c,且c是有理數(shù),則稱a與b是關(guān)于c的共軛(è)二次根式. (1)若a與23是關(guān)于6的共軛二次根式,則a=__;側(cè),售賣機(jī)A,B之間的距離(AB)為500米,管道分叉口M與B之間的距離為300米,MN丄AB于點(diǎn)N,M到AB的距離(MN)為240米.假設(shè)所有管道的材質(zhì)相同.(2)珍珍認(rèn)為:從管道AC上的任意一處向售賣機(jī)B引出的分叉管道中,BM是這些分叉管道中最省材料的,請通過計算判斷珍珍的觀點(diǎn)是否正確.(2)請用含字母的等式寫出你發(fā)現(xiàn)的規(guī)律 2 2若設(shè)a+b=(m+n)2=m2+2n2+2mn(其中a,b,m,n均為整數(shù)則有a+b=m2+2n2+2mn,所以a=m2+2n2,b=2mn.(1)若a+b=(2+)2,則a=(2)若a+b=(m+n7)2,當(dāng)a,b,m,n均為整數(shù)時,用含m,n的式子分別表示a,b,得a=______,b= ;(3)若a+6=(m+n)2,當(dāng)a,m,n均為正整數(shù)時,求a的值.圖,由四個全等的直角三角形拼成,用它可以證明勾股定理.向常春在2010年構(gòu)造發(fā)現(xiàn)了一個新的證法:顯然BCTAD.(1)請用a,b,c分別表示出四邊形ABDC的面積提示:S四邊形ABDC=S△ABC+S△BCD)梯形AEDC,△EBD的面積,再探究這三個圖形面積之間的關(guān)系,證明勾股定理a2+b2=c2.①點(diǎn)P為已給網(wǎng)格中格點(diǎn)上的點(diǎn),求BP的最大值為.②請利用“等面積法”解決問題:連接小正方形的三個頂點(diǎn),可得VABC,則AB邊上的高的長度為.(3)如圖4,在VABC中,AD是BC邊上的高,AB=4,AC=5,BC=6,求AD的長.2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑。1.下列各組數(shù)中,是勾股數(shù)的是()【答案】【答案】B【分析】本題考查了勾股數(shù).解題的關(guān)鍵是理解2,不能構(gòu)成勾股數(shù),故該選項錯誤. 【答案】B【答案】B【分析】此題主要考查了無理數(shù),算術(shù)平方根,無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要3.在VABC中,DA,DB,DC的對邊分別是a,b,c,則下列條件中不能說明VABC是直角三角形的是()A.(a+b)(a-b)=c2B.DA=90°-DBC.a(chǎn):b:c=1:2:3D.6DA=2DB=3DC【答案】【答案】C【分析】本題考查了直角三角形的判定,熟練掌握勾股定理選項A、∵(a+b)(a-b)=c2,展開得a2-b2=c2,即a2=b2+c2,符合勾股定理逆定理,故VABC是直角三角形;選項B、∵DA=90°-DB,:DA+DB=90°.又∵三角形內(nèi)角和為180°,:DC=180°-(DA+DB)=90°,故VABC是直角三角形;選項C、設(shè)a=k,b=2k,c=3k(k>0),選項D:D、設(shè)6DA=2DB=3DC=6k,∵DA+DB+DC=180°,:k+3k+2k=180°,解得k=30°,則7B=90O,故VABC是直角三角形.4.下列計算正確的是()A.55-22=33B.2+3=5【答案】D【答案】D【分析】本題考查二次根式的混合運(yùn)算,根據(jù)二次根式的加減乘除運(yùn)算逐一判斷即可.【詳解】解:【詳解】解:A、5和2的被開方數(shù)不相同,不能合并,故本選項的計算錯誤; 【答案】【答案】B【分析】本題考查了算術(shù)平方根的非負(fù)性,熟練掌握非負(fù)數(shù)的性質(zhì)是解題的關(guān)鍵.根據(jù)算術(shù)平方根和完全平方的非負(fù)性得到x-2024=0,y-2024=0,求出x,y的值,再根據(jù)算術(shù)平方根的定義即可得出答案.∴x-2024=0,y-2024=0,∴x=2024,y=2024,A.BC=5C.VABC的面積為10【答案】C【分析】本題考查了勾股定理、勾股定理的逆定理、利用網(wǎng)格求三角形的面積,定理的逆定理是解題的關(guān)鍵.根據(jù)勾股定理、勾股定理的逆定理、三角形的面積公式計算,判斷即可.:AC2+AB2=BC2,C、S△ABC=4×4-×1×2-×3×4-×2×4=5,C選項錯誤,符合題意;D、設(shè)點(diǎn)A到直線BC的距離為h,:h=2,D選項正確,不符合題意,A.2a+bB.-2a-cC.-b-a-cD.-3b-a+c【答案】【答案】C【分析】本題考查實數(shù)的運(yùn)算,立方根,實數(shù)與數(shù)軸,熟練掌握相關(guān)運(yùn)算法則及性質(zhì)是解題的關(guān)鍵.由數(shù)軸可得b<a<0<c,則a+b<0,b-c<0,利用算術(shù)平方根及立方根的定義,絕對值的性質(zhì)化簡并計算即可.【詳解】解:由數(shù)軸可得b<a<0<c,則a+b<0,b-c<0,原式=-b-(a+b)-(c-b)=-b-a-b-c+b=-b-a-c,8.直角三角形紙片的兩直角邊長分別為6,8,現(xiàn)將VABC按如圖所示方式折疊,使點(diǎn)A與點(diǎn)B重合,折痕為DE,則CE:CB的值是()【答案】C【分析】本題主要考查折疊的性質(zhì)、勾股定理,熟練掌握折疊的性質(zhì)、勾股定理是解題的關(guān)鍵.由題意易得AB=10,由折疊的性質(zhì)可得BE=AE,BD=AD=5,設(shè)AE=BE=x,則CE=8-x,然后根據(jù)勾股定理可進(jìn)行求解.設(shè)AE=BE=x,則CE=8-x,在直角三角形BCE中,BC2+CE2=BE2,即36+(8-x)2=x2,,7.9.按如圖所示的程序計算,若開始輸入的值為9,則最后輸出的y值是() 【答案】【答案】A【分析】本題考查實數(shù)的分類及運(yùn)算,判斷每步計算結(jié)果是否為無理數(shù)是解題的關(guān)鍵.根據(jù)已知判斷每一步輸出結(jié)果即可得到答案.然后通過添加輔助線用面積法證明勾股定理.已知c=4,4個直角三角形未覆蓋區(qū)域即白色部10,那么BC的長是() 【答案】【答案】D【分析】本題主要考查勾股定理的證明,完全平方公式的應(yīng)用,三角形的練運(yùn)用勾股定理解決問題.根據(jù)題意由4個直角三角形未覆蓋區(qū)域即白色部分的面積為以c為邊長的正方形面積減去兩個直的面積,建立方程求解出ab的值,再利用完全平方公式變形即可解答.根據(jù)題意:c2-2×ab=10,c=4,則ab=16-10=6,:(a+b)2=a2+b2+2ab=16+12=28,:a+b=2負(fù)值舍去即BC=27,【答案】【答案】-32【詳解】解:3-27=-3;故答案為:-3;2.【答案】點(diǎn)【答案】點(diǎn)Q/Q點(diǎn) ::2.5<15-1<3,::表示-1的點(diǎn)是Q點(diǎn).故答案為:點(diǎn)故答案為:點(diǎn)Q.13.若與n-都是最簡二次根式、并且是同類二次根式,則m+n=.【答案】【答案】5【分析】本題主要考查了同類二次根式的定義,即化成最簡二本題根據(jù)題意,它們的被開方數(shù)相同,列出方程求解.【詳解】解:∵m2m+2n-5與n-1m+n都是最簡二次根式、并且是同類二次根式,:m=2,n-1=2,解得:m=2,n=3,此時被開方數(shù)2m+2n-5=2×2+2×3-5=5,m+n=2+3=5,被開方數(shù)相同,滿足同類二次根式的條件。【答案】3【答案】32【分析】本題考查“平面展開-最短路徑問題”,解題關(guān)鍵是將立體圖形根據(jù)要求變成平面圖形處理.根據(jù)題意,將長方體的盒子按不同方式展開,得到不同的矩形,求出不同矩形的對答案.答案. =3=32AB= =25=25AB=22+42 =26AB=26AB=52+12::最短距離為32.故答案為:故答案為:32.15.如圖,在Rt△ABC中,7ACB=90°,AC=6,BC=8,E為AC上一點(diǎn),且AE=,AD平分DBAC交BC于D.若P是AD上的動點(diǎn),則PC+PE的最小值等于.26【答案】5【分析】本題考查軸對稱【分析】本題考查軸對稱-最短問題,勾股定理等知識,解題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題.作點(diǎn)E關(guān)于AD的對稱點(diǎn)E¢,連接CE¢交AD于P¢,連接E¢P,由對稱可得PE=PE¢,所以【詳解】解:如圖,作點(diǎn)【詳解】解:如圖,作點(diǎn)E關(guān)于AD的對稱點(diǎn)E¢,連接CE¢交AD于P¢,連接E¢P,于H.∴∴AC.BC=AB.CH,【答案】【答案】2,2或3【分析】本題考查了勾股定理,全等三角形的判定和性質(zhì),熟悉在任何一個直角三角形中,兩直角邊長的【分析】本題考查了勾股定理,全等三角形的判定和性質(zhì),熟悉在任何一個直角三角形中,兩直角邊長的平方之和等于斜邊長的平方是解答此題的關(guān)平方之和等于斜邊長的平方是解答此題的關(guān)鍵.本題需要分三種情況討論,分別為本題需要分三種情況討論,分別為①AB=BD時,②AB=AD,③AD=BD,再根據(jù)勾股定理分別計算出CD的值即可.【詳解】解:【詳解】解:∵AC=2,BC=4,AB=25,∴∴AC2+BC2=AB2,∴∴VABC為直角三角形,DC=90°,((1)當(dāng)AB=BD時,過D點(diǎn)作BC的垂線交CB的延長線于E,如圖∴∴DCAB=DDBE,∴∴△BED≌△ACB(AAS),((2)當(dāng)AB=AD時,過點(diǎn)D作AC的垂線,交CA延長線于E,如圖,::DABC=DDAE,::△DEA≌△ACB(AAS),((3)當(dāng)AD=BD時,過D點(diǎn)作AC、AB的垂線,垂::DADC=DBDF,在在VADE和VBDF中,::△ADE≌△BDF(AAS),::AE=BF,::AC+BC=CE-AE+CF+BF=2CE,::CE=3,::CD=32;故答案為:故答案為:2或2或3.(2)求x的值:2(x-2)2-18=0(2)x=5或x=-1【分析】本題考查了算術(shù)平方根、立方根的運(yùn)算以及利用平方根解方程,熟練掌握鍵.(1)分別計算各項的值,再進(jìn)行加減運(yùn)算.(2)先對方程進(jìn)行化簡,將含未知數(shù)的項化為完全平方的形式的值.=-1.(2)解:2(x-2)2-18=0,移項得2(x-2)2=18,當(dāng)x-2=3時,解得x=3+2=5;當(dāng)x-2=-3時,解得x=―3+2=―1,綜上,x=5或x=-1. (1)請在網(wǎng)格中畫出格點(diǎn)三角形ABC,使AB=22,BC=13,AC=17;(2)求VABC的面積.【分析】本題考查了作圖——應(yīng)用與設(shè)計作圖,勾股定理,構(gòu)圖法求三角形的面積,讀懂題目信息,理解構(gòu)圖法的操作方法是解題的關(guān)鍵.(2)利用VABC所在的長方形的面積減去四周三個小直角三角形的面積,計算即可得解.解:S△ABC=3×4-×2×2-×2×3-×1×4=5.19.已知|a|=4,b是9的算術(shù)平方根,3c-2的立方根是-2.(2)若a>b>c,求5a+b-c的平方根.【答案】(1)a=±4,b=3,c=-2(2)先根據(jù)a>b>c確定a的值,進(jìn)而求出5a+b-c的值,再求平方根即可.所以a=±4,b=3,3c-2=-8,所以c=-2.所以5a+b-c=5×4+3-(-2)=25.所以5a+b-c的平方根是±5.(1)求證:AE=CF;(2)若BE=2,BC=8,求線段BF的長.【答案】(1)見解析【分析】本題考查了全等三角形的判定與性質(zhì),勾股定理解三角形,熟練掌握全等三角形決本題的關(guān)鍵.(2)設(shè)BF=x,由邊長可表示FC與AE,再根據(jù)勾股定理即可求解.:△AED≥△FCD(AAS),:AE=CF;”BE=2,由(1)知,△AED≌△FCD,∴AD=DF,在Rt△ABD和Rt△BDF中,由勾股定理可知:AB2+AD2=BD2,BF2+DF2=BD2,∴AB2+AD2=BF2+DF2,∴線段BF的長為5.21.定義:若兩個含二次根式的代數(shù)式a,b滿足ab=c,且c是有理數(shù),則稱a與b是關(guān)于c的共軛(è)二次根式. (1)若a與23是關(guān)于6的共軛二次根式,則a=__;【答案】【答案】(1)3【分析】本題考查了新定義共軛二次根式的理解和應(yīng)用,分母有理化,平方差公式,并【分析】本題考查了新定義共軛二次根式的理解和應(yīng)用,分母有理化,平方差公式,并質(zhì)進(jìn)行計算.∴∴(4+)(8-m)=26,側(cè),售賣機(jī)A,B之間的距離(AB)為500米,管道分叉口M與B之間的距離為300米,MN丄AB于點(diǎn)N,M到AB的距離(MN)為240米.假設(shè)所有管道的材質(zhì)相同.(2)珍珍認(rèn)為:從管道AC上的任意一處向售賣機(jī)B引出的分叉管道中,BM是這些分叉管道中最省材料的,請通過計算判斷珍珍的觀點(diǎn)是否正確.【答案】(1)180米在Rt△BMN中,BM=300m,MN=240m∴AN=AB-BN=320m.在Rt△AMN中,∴AB2+BM2,∴DAMB=90°,即BM丄AM,∴BM是這些管道中最省材料的,即珍珍的觀點(diǎn)正確.(2)請用含字母的等式寫出你發(fā)現(xiàn)的規(guī)律【分析】本題主要考查了二次根式的運(yùn)算,數(shù)字規(guī)律的探索,熟納規(guī)律是解答本題的關(guān)鍵.根據(jù)對原式變形計算即可得解.1故答案為:1+故答案為:1+:第n個等式可表示為=2023+1-+-+-+…+- 2 2若設(shè)a+b=(m+n)2=m2+2n2+2mn(其中a,b,m,n均為整數(shù)則有a+b=m2+2n2+2mn,所以a=m2+2n2,b=2mn.(1)若a+b=(2+)2,則a=(2)若a+b=(m+n7)2,當(dāng)a,b,m,n均為整數(shù)時,用含m,n的式子分別表示a,b,得a=,b= ;(3)若a+6=(m+n)2,當(dāng)a,m,n均為正整數(shù)時,求a的值.【答案】【答案】(1)7,4(2)m2+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論