版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn),與y軸交于點(diǎn),且(1)求;(2)若為直線上一點(diǎn).①的面積不大于面積的,求P點(diǎn)橫坐標(biāo)x的取值范圍;②請(qǐng)直接寫(xiě)出用含x的式子表示y.(3)已知點(diǎn),若的面積為6,請(qǐng)直接寫(xiě)出m的值.2.如圖,已知直線射線,.是射線上一動(dòng)點(diǎn),過(guò)點(diǎn)作交射線于點(diǎn),連接.作,交直線于點(diǎn),平分.(1)若點(diǎn),,都在點(diǎn)的右側(cè).①求的度數(shù);②若,求的度數(shù).(不能使用“三角形的內(nèi)角和是”直接解題)(2)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,是否存在這樣的偕形,使?若存在,直接寫(xiě)出的度數(shù);若不存在.請(qǐng)說(shuō)明理由.3.已知,AB∥CD.點(diǎn)M在AB上,點(diǎn)N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關(guān)系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出∠FEQ的度數(shù).4.如圖①,將一張長(zhǎng)方形紙片沿對(duì)折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對(duì)折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計(jì)算的度數(shù).5.如圖1,已AB∥CD,∠C=∠A.(1)求證:AD∥BC;(2)如圖2,若點(diǎn)E是在平行線AB,CD內(nèi),AD右側(cè)的任意一點(diǎn),探究∠BAE,∠CDE,∠E之間的數(shù)量關(guān)系,并證明.(3)如圖3,若∠C=90°,且點(diǎn)E在線段BC上,DF平分∠EDC,射線DF在∠EDC的內(nèi)部,且交BC于點(diǎn)M,交AE延長(zhǎng)線于點(diǎn)F,∠AED+∠AEC=180°,①直接寫(xiě)出∠AED與∠FDC的數(shù)量關(guān)系:.②點(diǎn)P在射線DA上,且滿足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,補(bǔ)全圖形后,求∠EPD的度數(shù)6.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請(qǐng)證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請(qǐng)直接寫(xiě)出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.7.先閱讀然后解答提出的問(wèn)題:設(shè)a、b是有理數(shù),且滿足,求ba的值.解:由題意得,因?yàn)閍、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無(wú)理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問(wèn)題:設(shè)x、y都是有理數(shù),且滿足,求x+y的值.8.據(jù)說(shuō),我國(guó)著名數(shù)學(xué)家華羅庚在一次訪問(wèn)途中,看到飛機(jī)鄰座的乘客閱讀的雜志上有一道智力題:一個(gè)數(shù)32768,它是一個(gè)正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準(zhǔn)確計(jì)算出的嗎?請(qǐng)按照下面的問(wèn)題試一試:(1)由,因?yàn)?,?qǐng)確定是______位數(shù);(2)由32768的個(gè)位上的數(shù)是8,請(qǐng)確定的個(gè)位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因?yàn)?,?qǐng)確定的十位上的數(shù)是_____________;(3)已知和分別是兩個(gè)數(shù)的立方,仿照上面的計(jì)算過(guò)程,請(qǐng)計(jì)算:;.9.閱讀材料,回答問(wèn)題:(1)對(duì)于任意實(shí)數(shù)x,符號(hào)表示“不超過(guò)x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),就是x,當(dāng)x不是整數(shù)時(shí),是點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),如,,,,則________,________.(2)2015年11月24日,杭州地鐵1號(hào)線下沙延伸段開(kāi)通運(yùn)營(yíng),極大的方便了下沙江濱居住區(qū)居民的出行,杭州地鐵收費(fèi)采用里程分段計(jì)價(jià),起步價(jià)為2元/人次,最高價(jià)為8元/人次,不足1元按1元計(jì)算,具體權(quán)費(fèi)標(biāo)準(zhǔn)如下:里程范圍4公里以內(nèi)(含4公里)4-12公里以內(nèi)(含12公里)12-24公里以內(nèi)(含24公里)24公里以上收費(fèi)標(biāo)準(zhǔn)2元4公里/元6公里/元8公里/元①若從下沙江濱站到文海南路站的里程是3.07公里,車費(fèi)________元,下沙江濱站到金沙湖站里程是7.93公里,車費(fèi)________元,下沙江濱站到杭州火東站里程是19.17公里,車費(fèi)________元;②若某人乘地鐵花了7元,則他乘地鐵行駛的路程范圍(不考慮實(shí)際站點(diǎn)下車?yán)锍糖闆r)?10.對(duì)于實(shí)數(shù)a,我們規(guī)定:用符號(hào)表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.(1)仿照以上方法計(jì)算:=______;=_____.(2)若,寫(xiě)出滿足題意的x的整數(shù)值______.如果我們對(duì)a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對(duì)10連續(xù)求根整數(shù)2次=1,這時(shí)候結(jié)果為1.(3)對(duì)100連續(xù)求根整數(shù),____次之后結(jié)果為1.(4)只需進(jìn)行3次連續(xù)求根整數(shù)運(yùn)算后結(jié)果為1的所有正整數(shù)中,最大的是____.11.先閱讀下面的材料,再解答后面的各題:現(xiàn)代社會(huì)會(huì)保密要求越來(lái)越高,密碼正在成為人們生活的一部分,有一種密碼的明文(真實(shí)文)按計(jì)算機(jī)鍵盤(pán)字母排列分解,其中這26個(gè)字母依次對(duì)應(yīng)這26個(gè)自然數(shù)(見(jiàn)下表).QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526給出一個(gè)變換公式:將明文轉(zhuǎn)成密文,如,即變?yōu)椋?,即A變?yōu)镾.將密文轉(zhuǎn)成成明文,如,即變?yōu)椋海碊變?yōu)镕.(1)按上述方法將明文譯為密文.(2)若按上方法將明文譯成的密文為,請(qǐng)找出它的明文.12.對(duì)于有理數(shù)、,定義了一種新運(yùn)算“※”為:如:,.(1)計(jì)算:①______;②______;(2)若是關(guān)于的一元一次方程,且方程的解為,求的值;(3)若,,且,求的值.13.如圖,已知點(diǎn),點(diǎn),且,滿足關(guān)系式.(1)求點(diǎn)、的坐標(biāo);(2)如圖1,點(diǎn)是線段上的動(dòng)點(diǎn),軸于點(diǎn),軸于點(diǎn),軸于點(diǎn),連接、.試探究,之間的數(shù)量關(guān)系;(3)如圖2,線段以每秒2個(gè)單位長(zhǎng)度的速度向左水平移動(dòng)到線段.若線段交軸于點(diǎn),當(dāng)三角形和三角形的面積相等時(shí),求移動(dòng)時(shí)間和點(diǎn)的坐標(biāo).14.如圖,已知直線,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在點(diǎn)的右側(cè),平分平分,直線交于點(diǎn).(1)若時(shí),則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動(dòng),其他條件不變,請(qǐng)畫(huà)出相應(yīng)圖形,并直接寫(xiě)出的度數(shù).(用含的代數(shù)式表示)15.如圖,在平面直角坐標(biāo)系中,四邊形各頂點(diǎn)的坐標(biāo)分別為,,,,現(xiàn)將四邊形經(jīng)過(guò)平移后得到四邊形,點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為.(1)請(qǐng)直接寫(xiě)點(diǎn)、、的坐標(biāo);(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點(diǎn),連接、,使,若存在這樣一點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.16.在平面直角坐標(biāo)系中,點(diǎn),,,且,,滿足.(1)請(qǐng)用含的式子分別表示,兩點(diǎn)的坐標(biāo);(2)當(dāng)實(shí)數(shù)變化時(shí),判斷的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍;(3)如圖,已知線段與軸相交于點(diǎn),直線與直線交于點(diǎn),若,求實(shí)數(shù)的取值范圍.17.在如圖所示的平面直角坐標(biāo)系中,A(1,3),B(3,1),將線段A平移至CD,C(m,-1),D(1,n)(1)m=_____,n=______(2)點(diǎn)P的坐標(biāo)是(c,0)①設(shè)∠ABP=,請(qǐng)寫(xiě)出∠BPD和∠PDC之間的數(shù)量關(guān)系(用含的式子表示,若有多種數(shù)量關(guān)系,選擇一種加以說(shuō)明)②當(dāng)三角形PAB的面積不小于3且不大于10,求點(diǎn)p的橫坐標(biāo)C的取值范圍(直接寫(xiě)出答案即可)18.在平面直角坐標(biāo)系中,點(diǎn)A(1,2),點(diǎn)B(a,b),且,點(diǎn)E(6,0),將線段AB向下平移m個(gè)單位(m>0)得到線段CD,其中A、B的對(duì)應(yīng)點(diǎn)分別為C、D.(1)求點(diǎn)的坐標(biāo)及三角形ABE的面積;(2)當(dāng)線段CD與軸有公共點(diǎn)時(shí),求的取值范圍;(3)設(shè)三角形CDE的面積為,當(dāng)時(shí),求的取值范圍.19.學(xué)校將20××年入學(xué)的學(xué)生按入學(xué)年份、年級(jí)、班級(jí)、班內(nèi)序號(hào)的順序給每一位學(xué)生編號(hào),如2015年入學(xué)的8年級(jí)3班的46號(hào)學(xué)生的編號(hào)為15080346.張山同學(xué)模仿二維碼的方式給學(xué)生編號(hào)設(shè)計(jì)了一套身份識(shí)別系統(tǒng),在5×5的正方形風(fēng)格中,黑色正方形表示數(shù)字1,白色正方形表示數(shù)字0.我們把從上往下數(shù)第i行、從左往右數(shù)第j列表示的數(shù)記為aij,(其中,i、j=1,2,3,4,5),規(guī)定Ai=16ai1+8ai2+4ai3+2ai4+ai5.(1)若A1表示入學(xué)年份,A2表示所在年級(jí),A3表示所在班級(jí),A4表示編號(hào)的十位數(shù)字,A5表示編號(hào)的個(gè)位數(shù)字.①圖1是張山同學(xué)的身份識(shí)別圖案,請(qǐng)直接寫(xiě)出張山同學(xué)的編號(hào);②請(qǐng)?jiān)趫D2中畫(huà)出2018年入學(xué)的9年級(jí)5班的39號(hào)同學(xué)的身份識(shí)別圖案;(2)張山同學(xué)又設(shè)計(jì)了一套信息加密系統(tǒng),其中A1表示入學(xué)年份加8,A2表示所在年級(jí)的數(shù)減6再加上所在班級(jí)的數(shù),A3表示所在年級(jí)的數(shù)乘2后減3再減所在班級(jí)的數(shù),將編號(hào)(班內(nèi)序號(hào))的末兩位單列出來(lái),作為一個(gè)兩位數(shù),個(gè)位與十位數(shù)字對(duì)換后再加2,所得結(jié)果的十位數(shù)字用A4表示、個(gè)位數(shù)字用A5表示.例如:2018年9年級(jí)5班的39號(hào)同學(xué),其加密后的身份識(shí)別圖案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A4=9,A5=5,所以其加密后的身份識(shí)別(26081095)圖案如圖3所示.圖4是李思同學(xué)加密后的身份識(shí)別圖案,請(qǐng)求出李思同學(xué)的編號(hào).20.某工廠接受了20天內(nèi)生產(chǎn)1200臺(tái)GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)GH型產(chǎn)品由4個(gè)G型裝置和3個(gè)H型裝置配套組成.工廠現(xiàn)有80名工人,每個(gè)工人每天能加工6個(gè)G型裝置或3個(gè)H型裝置.工廠將所有工人分成兩組同時(shí)開(kāi)始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?請(qǐng)列出二元一次方程組解答此問(wèn)題.(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行G型裝置的加工,且每人每天只能加工4個(gè)G型裝置.設(shè)原來(lái)每天安排x名工人生產(chǎn)G型裝置,后來(lái)補(bǔ)充m名新工人,求x的值(用含m的代數(shù)式表示)21.歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項(xiàng)式用記號(hào)f(x)來(lái)表示.例如f(x)=x2+3x-5,把x=某數(shù)時(shí)多項(xiàng)式的值用f(某數(shù))來(lái)表示.例如x=-1時(shí)多項(xiàng)式x2+3x-5的值記為f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x2-3x+1,分別求出g(-1)和g(-2);(2)已知h(x)=ax3+2x2-ax-6,當(dāng)h()=a,求a的值;(3)已知f(x)=--2(a,b為常數(shù)),當(dāng)k無(wú)論為何值,總有f(1)=0,求a,b的值.22.為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過(guò)6米3時(shí),水費(fèi)按a元/米3收費(fèi);每戶每月用水量超過(guò)6米3時(shí),不超過(guò)的部分每立方米仍按a元收費(fèi),超過(guò)的部分按c元/米3收費(fèi),該市某用戶今年3、4月份的用水量和水費(fèi)如下表所示:月份用水量(m3)收費(fèi)(元)357.54927(1)求a、c的值,并寫(xiě)出每月用水量不超過(guò)6米3和超過(guò)6米3時(shí),水費(fèi)與用水量之間的關(guān)系式;(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi).23.小明為班級(jí)購(gòu)買信息學(xué)編程競(jìng)賽的獎(jiǎng)品后,回學(xué)校向班主任李老師匯報(bào)說(shuō):“我買了兩種書(shū),共30本,單價(jià)分別為20元和24元,買書(shū)前我領(lǐng)了700元,現(xiàn)在還余38元.”李老師算了一下,說(shuō):“你肯定搞錯(cuò)了.”(1)李老師為什么說(shuō)他搞錯(cuò)了?試用方程的知識(shí)給予解釋;(2)小明連忙拿出購(gòu)物發(fā)票,發(fā)現(xiàn)的確弄錯(cuò)了,因?yàn)樗€買了一個(gè)筆記本.但筆記本的單價(jià)已模糊不清,只能辨認(rèn)出應(yīng)為小于10元的整數(shù),如果單價(jià)為20元的書(shū)多于24元的書(shū),請(qǐng)問(wèn):筆記本的單價(jià)為多少元?24.在平面直角坐標(biāo)系中,把線段先向右平移h個(gè)單位,再向下平移1個(gè)單位得到線段(點(diǎn)A對(duì)應(yīng)點(diǎn)C),其中分別是第三象限與第二象限內(nèi)的點(diǎn).(1)若,求C點(diǎn)的坐標(biāo);(2)若,連接,過(guò)點(diǎn)B作的垂線l①判斷直線l與x軸的位置關(guān)系,并說(shuō)明理由;②已知E是直線l上一點(diǎn),連接,且的最小值為1,若點(diǎn)B,D及點(diǎn)都是關(guān)于x,y的二元一次方程的解為坐標(biāo)的點(diǎn),試判斷是正數(shù)?負(fù)數(shù)還是0?并說(shuō)明理由.25.閱讀材料:關(guān)于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問(wèn)題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問(wèn)題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)榻獾茫驗(yàn)閠為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請(qǐng)你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請(qǐng)直接寫(xiě)出答案.26.閱讀材料:形如的不等式,我們就稱之為雙連不等式.求解雙連不等式的方法一,轉(zhuǎn)化為不等式組求解,如;方法二,利用不等式的性質(zhì)直接求解,雙連不等式的左、中、右同時(shí)減去1,得,然后同時(shí)除以2,得.解決下列問(wèn)題:(1)請(qǐng)你寫(xiě)一個(gè)雙連不等式并將它轉(zhuǎn)化為不等式組;(2)利用不等式的性質(zhì)解雙連不等式;(3)已知,求的整數(shù)值.27.如圖,在平面直角坐標(biāo)系中,軸,軸,且,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒的速度,沿路線向點(diǎn)運(yùn)動(dòng);動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒的速度,沿路線向點(diǎn)運(yùn)動(dòng).若兩點(diǎn)同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止.(Ⅰ)直接寫(xiě)出三個(gè)點(diǎn)的坐標(biāo);(Ⅱ)設(shè)兩點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,用含的式子表示運(yùn)動(dòng)過(guò)程中三角形的面積;(Ⅲ)當(dāng)三角形的面積的范圍小于16時(shí),求運(yùn)動(dòng)的時(shí)間的范圍.28.在平面直角坐標(biāo)系xOy中.點(diǎn)A,B,P不在同一條直線上.對(duì)于點(diǎn)P和線段AB給出如下定義:過(guò)點(diǎn)P向線段AB所在直線作垂線,若垂足Q落在線段AB上,則稱點(diǎn)P為線段AB的內(nèi)垂點(diǎn).若垂足Q滿足|AQ-BQ|最小,則稱點(diǎn)P為線段AB的最佳內(nèi)垂點(diǎn).已知點(diǎn)A(﹣2,1),B(1,1),C(﹣4,3).(1)在點(diǎn)P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點(diǎn)為;(2)點(diǎn)M是線段AB的最佳內(nèi)垂點(diǎn)且到線段AB的距離是2,則點(diǎn)M的坐標(biāo)為;(3)點(diǎn)N在y軸上且為線段AC的內(nèi)垂點(diǎn),則點(diǎn)N的縱坐標(biāo)n的取值范圍是;(4)已知點(diǎn)D(m,0),E(m+4,0),F(xiàn)(2m,3).若線段CF上存在線段DE的最佳內(nèi)垂點(diǎn),求m的取值范圍.29.對(duì)于三個(gè)數(shù),,,表示,,這三個(gè)數(shù)的平均數(shù),表示,,這三個(gè)數(shù)中最小的數(shù),如:,;,.解決下列問(wèn)題:(1)填空:______;(2)若,求的取值范圍;(3)①若,那么______;②根據(jù)①,你發(fā)現(xiàn)結(jié)論“若,那么______”(填,,大小關(guān)系);③運(yùn)用②解決問(wèn)題:若,求的值.30.如圖,在平面直角坐標(biāo)系中,已知△ABC,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)B的坐標(biāo)是(2,3),點(diǎn)C在x軸的負(fù)半軸上,且AC=6.(1)直接寫(xiě)出點(diǎn)C的坐標(biāo).(2)在y軸上是否存在點(diǎn)P,使得S△POB=S△ABC若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,作射線CH,連接BH,點(diǎn)M在射線CH上運(yùn)動(dòng)(不與點(diǎn)C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)4;(2)①或;②;(3)或.【分析】(1)先根據(jù)偶次方和絕對(duì)值的非負(fù)性求出的值,從而可得點(diǎn)的坐標(biāo)和的長(zhǎng),再利用直角三角形的面積公式即可得;(2)①分和兩種情況,先分別求出和的面積,再根據(jù)已知條件建立不等式,解不等式即可得;②分和兩種情況,利用、和的面積關(guān)系建立等式,化簡(jiǎn)即可得;(3)過(guò)點(diǎn)作軸的平行線,交直線于點(diǎn),從而可得,再分、和三種情況,分別利用三角形的面積公式建立方程,解方程即可得.【詳解】解:(1)由題意得:,解得,,,軸軸,;(2)①的面積不大于面積的,的面積小于的面積,則分以下兩種情況:如圖,當(dāng)時(shí),則,,因此有,解得,此時(shí)的取值范圍為;如圖,當(dāng)時(shí),則,,因此有,解得,此時(shí)的取值范圍為,綜上,點(diǎn)橫坐標(biāo)的取值范圍為或;②當(dāng)時(shí),則,,由(2)①可知,,則,即;如圖,當(dāng)時(shí),則,,,,,解得,綜上,;(3)過(guò)點(diǎn)作軸的平行線,交直線于點(diǎn),由(2)②可知,,則,由題意,分以下三種情況:①如圖,當(dāng)時(shí),則,,解得,不符題設(shè),舍去;②如圖,當(dāng)時(shí),則,,解得或(不符題設(shè),舍去);③如圖,當(dāng)時(shí),則,,解得,符合題設(shè),綜上,的值為或.【點(diǎn)睛】本題考查了偶次方和絕對(duì)值的非負(fù)性、坐標(biāo)與圖形等知識(shí)點(diǎn),較難的是題(3),正確分三種情況討論是解題關(guān)鍵.2.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=20°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)設(shè)∠EGC=3x,∠EFC=2x,則∠GCF=3x-2x=x,分兩種情況討論:①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°?40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,設(shè)∠EGC=3x°,∠EFC=2x°,①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,則∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,則∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),反向延長(zhǎng)CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【點(diǎn)睛】本題主要考查了平行線的性質(zhì),掌握兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等是解題的關(guān)鍵.3.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過(guò)E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過(guò)F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作平行線的輔助線是解題的關(guān)鍵.4.(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點(diǎn)睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯(cuò)角相等”及折疊的性質(zhì)是解題的關(guān)鍵.5.(1)見(jiàn)解析;(2)∠BAE+∠CDE=∠AED,證明見(jiàn)解析;(3)①∠AED-∠FDC=45°,理由見(jiàn)解析;②50°【分析】(1)根據(jù)平行線的性質(zhì)及判定可得結(jié)論;(2)過(guò)點(diǎn)E作EF∥AB,根據(jù)平行線的性質(zhì)得AB∥CD∥EF,然后由兩直線平行內(nèi)錯(cuò)角相等可得結(jié)論;(3)①根據(jù)∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可導(dǎo)出角的關(guān)系;②先根據(jù)∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根據(jù)∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度數(shù).【詳解】解:(1)證明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如圖2,過(guò)點(diǎn)E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案為:∠AED-∠FDC=45°;②如圖3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【點(diǎn)睛】本題主要考查平行線的判定和性質(zhì),熟練掌握平行線的判定和性質(zhì),角平分線的性質(zhì)等知識(shí)點(diǎn)是解題的關(guān)鍵.6.(1)AB//CD,證明見(jiàn)解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過(guò)點(diǎn)E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過(guò)點(diǎn)E作EM∥AB,過(guò)點(diǎn)F作FN∥AB,過(guò)點(diǎn)G作GH∥AB,根據(jù)探究(1)的證明過(guò)程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過(guò)點(diǎn)M作EF∥AB,過(guò)點(diǎn)N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過(guò)點(diǎn)E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯(cuò)角相等,兩直線平行).∴AB//CD.(2)過(guò)點(diǎn)E作EM∥AB,過(guò)點(diǎn)F作FN∥AB,過(guò)點(diǎn)G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開(kāi)口朝左的所有角度之和與開(kāi)口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過(guò)點(diǎn)M作EF∥AB,過(guò)點(diǎn)N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過(guò)E點(diǎn)作AB(或CD)的平行線,把復(fù)雜的圖形化歸為基本圖形.7.7或-1.【分析】根據(jù)題目中給出的方法,對(duì)所求式子進(jìn)行變形,求出x、y的值,進(jìn)而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當(dāng)x=4時(shí),x+y=4+3=7當(dāng)x=-4時(shí),x+y=-4+3=-1∴x+y的值是7或-1.【點(diǎn)睛】本題考查實(shí)數(shù)的運(yùn)算,解題的關(guān)鍵是弄清題中給出的解答方法,然后運(yùn)用類比的思想進(jìn)行解答.8.(1)兩;(2)2,3;(3)24,﹣48;【分析】(1)由題意可得,進(jìn)而可得答案;(2)由只有個(gè)位數(shù)是2的數(shù)的立方的個(gè)位數(shù)是8,可確定的個(gè)位上的數(shù),由可得27<32<64,進(jìn)而可確定,于是可確定的十位上的數(shù),進(jìn)而可得答案;(3)仿照(1)(2)兩小題中的方法解答即可.【詳解】解:(1)因?yàn)?,所以,所以是一個(gè)兩位數(shù);故答案為:兩;(2)因?yàn)橹挥袀€(gè)位數(shù)是2的數(shù)的立方的個(gè)位數(shù)是8,所以的個(gè)位上的數(shù)是2,劃去32768后面的三位數(shù)768得到32,因?yàn)椋?7<32<64,所以,所以的十位上的數(shù)是3;故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是4的數(shù)的立方的個(gè)位數(shù)是4,∴的個(gè)位上的數(shù)是4,劃去13824后面的三位數(shù)824得到13,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是8的數(shù)的立方的個(gè)位數(shù)是2,∴的個(gè)位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,∵64<110<125,∴40<<50,∴;∴=﹣48.【點(diǎn)睛】本題考查了立方根和立方數(shù)的規(guī)律探求,具有一定的難度,正確理解題意、確定所求的數(shù)的個(gè)位數(shù)字和十位數(shù)字是解題的關(guān)鍵.9.(1);;(2)①2;3;6.②這個(gè)乘客花費(fèi)7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【分析】(1)根據(jù)題意,確定實(shí)數(shù)左側(cè)第一個(gè)整數(shù)點(diǎn)所對(duì)應(yīng)的數(shù)即得;(2)①根據(jù)表格確定乘坐里程的對(duì)應(yīng)段,然后將乘坐里程分段計(jì)費(fèi)并累加即得;②根據(jù)表格將每段的費(fèi)用從左至右依次累加直至費(fèi)用為7元,進(jìn)而確定7元乘坐的具體里程即得.【詳解】(1)∵∴∵∴故答案為:;.(2)①∵∴3.07公里需要2元∵∴7.93公里所需費(fèi)用分為兩段即:前4公里2元,后3.93公里1元∴7.93公里所需費(fèi)用為:(元)∵∴公里所需費(fèi)用分為三段計(jì)費(fèi)即:前4公里2元,4至12公里2元,12公里至19.17公里2元;∴公里所需費(fèi)用為:(元)故答案為:2;3;6.②由題意得:乘坐24公里所需費(fèi)用分為三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需費(fèi)用為:(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地鐵最大里程為:(公里)∴這個(gè)乘客花費(fèi)7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里答:這個(gè)乘客花費(fèi)7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【點(diǎn)睛】本題是閱讀材料題,考查了實(shí)數(shù)的實(shí)際應(yīng)用,根據(jù)材料中的新定義舉一反三并挖掘材料中深層次含義是解題關(guān)鍵.10.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結(jié)果;(2)根據(jù)定義可知x<4,可得滿足題意的x的整數(shù)值;(3)根據(jù)定義對(duì)120進(jìn)行連續(xù)求根整數(shù),可得3次之后結(jié)果為1;(4)最大的正整數(shù)是255,根據(jù)操作過(guò)程分別求出255和256進(jìn)行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數(shù)是255,理由是:∵[]=15,[]=3,[]=1,∴對(duì)255只需進(jìn)行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對(duì)256只需進(jìn)行4次操作后變?yōu)?,∴只需進(jìn)行3次操作后變?yōu)?的所有正整數(shù)中,最大的是255,故答案為255.【點(diǎn)睛】本題考查了估算無(wú)理數(shù)的大小的應(yīng)用,主要考查學(xué)生的閱讀能力和猜想能力,同時(shí)也考查了一個(gè)數(shù)的平方數(shù)的計(jì)算能力.11.(1)N,E,T密文為M,Q,P;(2)密文D,W,N的明文為F,Y,C.【分析】(1)
由圖表找出N,E,T對(duì)應(yīng)的自然數(shù),再根據(jù)變換公式變成密文.(2)由圖表找出N=M,Q,P對(duì)應(yīng)的自然數(shù),再根據(jù)變換.公式變成明文.【詳解】解:(1)將明文NET轉(zhuǎn)換成密文:即N,E,T密文為M,Q,P;(2)將密文D,W,N轉(zhuǎn)換成明文:即密文D,W,N的明文為F,Y,C.【點(diǎn)睛】本題考查有理數(shù)的混合運(yùn)算,此題較復(fù)雜,解答本題的關(guān)鍵是由圖表中找到對(duì)應(yīng)的數(shù)或字母,正確運(yùn)用轉(zhuǎn)換公式進(jìn)行轉(zhuǎn)換.12.(1)①5;②;(2)1;(3)16.【分析】(1)根據(jù)題中定義代入即可得出;(2)根據(jù),討論3和的兩種大小關(guān)系,進(jìn)行計(jì)算;(3)先判定A、B的大小關(guān)系,再進(jìn)行求解.【詳解】(1)根據(jù)題意:∵,∴,∵,∴.(2)∵,∴,①若,則,解得,②若,則,解得(不符合題意),∴.(3)∵,∴,∴,得,∴.【點(diǎn)睛】本題考查了一種新運(yùn)算,讀懂題意掌握新運(yùn)算并能正確化簡(jiǎn)是解題的關(guān)鍵.13.(1);(2);(3),點(diǎn)C的坐標(biāo)為【分析】(1)由題意易得,然后可求a、b的值,進(jìn)而問(wèn)題可求解;(2)由(1)及題意易得,然后根據(jù)建立方程求解即可;(3)分別過(guò)點(diǎn)作軸于點(diǎn)P,軸于點(diǎn)Q,由題意易得,然后可得,進(jìn)而可求t的值,最后根據(jù)(2)可得三角形的面積為3,則問(wèn)題可求解.【詳解】解:(1)∵,∴,∴,∴點(diǎn),點(diǎn);(2)由(1)可得點(diǎn),點(diǎn),∵軸于點(diǎn),軸于點(diǎn),軸于點(diǎn),∴,,∵,∴,∵,且,∴,化簡(jiǎn)得;(3)分別過(guò)點(diǎn)作軸于點(diǎn)P,軸于點(diǎn)Q,如圖所示:∵線段以每秒2個(gè)單位長(zhǎng)度的速度向左水平移動(dòng)到線段,時(shí)間為,∴,∵三角形和三角形的面積相等,∴,∴,∴,解得:,∴,由(2)可得三角形的面積為,∴三角形的面積為3,即,∴,∴.【點(diǎn)睛】本題主要考查圖形與坐標(biāo)、算術(shù)平方根與偶次冪的非負(fù)性及等積法,熟練掌握?qǐng)D形與坐標(biāo)、算術(shù)平方根與偶次冪的非負(fù)性及等積法是解題的關(guān)鍵.14.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過(guò)點(diǎn)E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯(cuò)角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當(dāng)點(diǎn)B在點(diǎn)A左側(cè)和當(dāng)點(diǎn)B在點(diǎn)A右側(cè),再分三種情況,討論,分別過(guò)點(diǎn)E作EF∥AB,由角平分線的定義,平行線的性質(zhì),以及角的和差計(jì)算即可.【詳解】解:(1)當(dāng)n=20時(shí),∠ABC=40°,過(guò)E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當(dāng)點(diǎn)B在點(diǎn)A左側(cè)時(shí),由(2)可知:∠BED=n°+40°;當(dāng)點(diǎn)B在點(diǎn)A右側(cè)時(shí),如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;綜上所述,∠BED的度數(shù)為n°+40°或n°-40°或220°-n°.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),以及角平分線的定義,正確應(yīng)用平行線的性質(zhì)得出各角之間關(guān)系是解題關(guān)鍵.15.(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據(jù)平移的規(guī)則,求出點(diǎn)的坐標(biāo)即可;(2)由平移的性質(zhì)可知,重疊部分為平行四邊形,且底邊長(zhǎng)為3,高為2,即可求出面積;(3)設(shè)點(diǎn)的坐標(biāo)為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個(gè)單位,向上平移一個(gè)單位;∵,,,∴;(2)如圖,延長(zhǎng)交x軸于點(diǎn)E,過(guò)點(diǎn)做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設(shè)點(diǎn)的坐標(biāo)為,∵,,∴,∴點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題考查了平移的性質(zhì),平行四邊形的性質(zhì),坐標(biāo)與圖形,以及求陰影部分的面積,解題的關(guān)鍵是熟練掌握平移的性質(zhì)進(jìn)行解題.16.(1),;(2)不變,值為;(3)【分析】(1)先解方程組,用含a的式子表示b、c的值,進(jìn)而可得點(diǎn)A,B,C的坐標(biāo).(2)根據(jù)S△ABC=S梯形AFGB+S梯形BGHC?S梯形AFHC代入數(shù)據(jù)計(jì)算即可.(3)先解方程組用含a的代數(shù)式表示出b,c,根據(jù)線段AB在與y軸相交于點(diǎn)E可得關(guān)于a的不等式組,解即可得a的一個(gè)取值范圍,再由2PA≤PC可得2S△AOB≤△S△BOC,然后用含a的代數(shù)式表示出2S△AOB與△S△BOC,進(jìn)而可得關(guān)于a的不等式,解不等式可得a的一另個(gè)取值范圍,從而可得結(jié)果.【詳解】解:(1)解方程組,得,,,(2)的面積不變,值為如圖,過(guò)點(diǎn),,分別作軸的垂線,垂足分別為,,,∵,,,∴,,,,,,∴;(3)連接,,∵,,,又∵線段在與軸相交于點(diǎn),∴,,∴,∵,∴,,∴2,如圖,過(guò)點(diǎn),,分別作軸的垂線,垂足分別為,,,∵,,,∴,解得,∴實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題屬于三角形綜合題,考查三角形的面積,解二元一次方程組,坐標(biāo)與圖形的性質(zhì),平移的性質(zhì)等知識(shí),涉及的知識(shí)點(diǎn)多,綜合性強(qiáng),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考?jí)狠S題.17.(1)-1,-3.(2)①當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.當(dāng)點(diǎn)P在直線AB的上方時(shí),∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由題意,線段AB向左平移2個(gè)單位,向下平移4個(gè)單位得到線段CD,利用平移規(guī)律求解即可.(2)①分三種情形求解,如圖1中,當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.如圖2中,當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.如圖3中,當(dāng)點(diǎn)P在直線AB的上方時(shí),同法可證∠BPD+∠PDC=α.分別利用平行線的性質(zhì)求解即可.②求出點(diǎn)P在直線AB兩側(cè),△PAB的面積分別為3和10時(shí),m的值,即可判斷.【詳解】解:(1)由題意,線段AB向左平移2個(gè)單位,向下平移4個(gè)單位得到線段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案為:-1,-3.(2)如圖1中,當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.理由:過(guò)點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD-∠PDC=∠BPD-∠DPE=∠BPE=α.如圖2中,當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.理由:過(guò)點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD+∠PDC=∠BPD+∠DPE=∠BPE=α.如圖3中,當(dāng)點(diǎn)P在直線AB的上方時(shí),同法可證∠BPD+∠PDC=α.(3)如圖4中,過(guò)點(diǎn)B作BH⊥x軸于H,過(guò)點(diǎn)A作AT⊥BH交BH于點(diǎn)T,延長(zhǎng)AB交x軸于E.當(dāng)點(diǎn)P在直線AB的下方時(shí),S△PAB=S梯形ATHP-S△ABT-S△PBH=(2+3-m)?3-×2×2-?(3-m)?1=-m+4,當(dāng)△PAB的面積=3時(shí),-m+4=3,解得m=1,當(dāng)△PAB的面積=3時(shí),-m+4=10,解得m=-6,∵△ABT是等腰直角三角形,∴∠ABT=45°=∠HBE,∴BH=EH=1,∴E(4,0),根據(jù)對(duì)稱性可知,當(dāng)點(diǎn)P在直線AB的右側(cè)時(shí),當(dāng)△PAB的面積=3時(shí),m=7,當(dāng)△PAB的面積=3時(shí),m=14,觀察圖象可知,-6<m≤1或7≤m<14.【點(diǎn)睛】本題屬于三角形綜合題,考查了三角形的面積,平行線的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用分割法求三角形面積,學(xué)會(huì)尋找特殊位置解決問(wèn)題,屬于中考??碱}型.18.(1)B(3,4),7;(2);(3)或【分析】(1)由算術(shù)平方根的意義可求出a,b的值,可求出B點(diǎn)的坐標(biāo),過(guò)點(diǎn)B作BH⊥x軸于點(diǎn)H,過(guò)點(diǎn)A作AM⊥BH于點(diǎn)M,過(guò)點(diǎn)E作EN⊥AM于點(diǎn)N,連接EM,由三角形面積公式可得出答案;(2)當(dāng)點(diǎn)C在x軸上時(shí),此時(shí)m=2,當(dāng)點(diǎn)D在x軸上時(shí),m=4,由題意可得出答案;(3)根據(jù)點(diǎn)C和點(diǎn)D不同的位置,由坐標(biāo)與圖形的性質(zhì)及三角形面積公式可得出答案.【詳解】解:(1)∵,∴,∴b=4,∴=0,∴a-3=0,∴a=3,∴B(3,4),∴過(guò)點(diǎn)B作BH⊥x軸于點(diǎn)H,過(guò)點(diǎn)A作AM⊥BH于點(diǎn)M,過(guò)點(diǎn)E作EN⊥AM于點(diǎn)N,連接EM,則S△ABE=S△ABM+S△EBM+S△AME=×2×2+×2×3+×2×2=7;(2)當(dāng)點(diǎn)C在x軸上時(shí),此時(shí)m=2,當(dāng)點(diǎn)D在x軸上時(shí),m=4,∴2≤m≤4時(shí),線段CD與x軸有公共點(diǎn);(3)當(dāng)點(diǎn)C在x軸上時(shí),此時(shí)m=2,C(1,0),D(3,2),S△CDE=5,當(dāng)點(diǎn)D在x軸上時(shí),此時(shí)m=4,C(1,-2),D(3,0),S△CDE=3,當(dāng)點(diǎn)C在x軸下方時(shí),點(diǎn)D在x軸上方時(shí),且S△CDE=4,如圖2,分別過(guò)點(diǎn)C,D作x軸,y軸平行線交于點(diǎn)G,連接GE,過(guò)點(diǎn)E作EH⊥CG于點(diǎn)H,∵C(1,2-m),D(3,4-m),∴CG=2,DG=2,EH=m-2,∴S△CDE=S△CDG+S△EDG-S△CEG,∴4=×2×2+×2×3?×2?(m?2),∴m=3.∴當(dāng)2≤m≤3時(shí),4≤S≤5;當(dāng)C,D均為x軸下方時(shí),如圖3,∵CG=DG=2,GH=3,EH=m-2,∴S△CDE=S△ECG-S△CDG-S△EDG,∴S△CDE=×2?(m?2)-×2×2?×2×3=m-7,當(dāng)m-7=4時(shí),m=11,當(dāng)m-7=5時(shí),m=12,∴當(dāng)11≤m≤12時(shí),4≤S≤5.綜合以上可得,當(dāng)2≤m≤3或11≤m≤12時(shí),4≤S≤5.【點(diǎn)睛】本題是幾何變換綜合題,考查了三角形的面積,坐標(biāo)與圖形的性質(zhì),平移的性質(zhì),正確進(jìn)行分類討論是解題的關(guān)鍵.19.(1)①20070618;②見(jiàn)解析;(2)16080413【分析】(1)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(2)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(3)由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,A2=4+2=6,A3=8+1=9,由此得到李思在8年級(jí)4班,再求出A4,A5,即可得到答案.【詳解】解:(1)①在圖1中,A1=16×1+8×0+4×1+2×0+0=20,A2=16×0+8×0+4×1+2×1+1=7,A3=16×0+8×0+4×1+2×1+0=6,A4=1,A5=16×0+8×1+4×0+2×0+0=8,故答案為:20070618;②如圖所示.2018年入學(xué)的9年級(jí)5班的39號(hào),其中:A1=18=16+0+0+1+1,A2=09=8+1A3=05=4+1,A4=3,A5=9=8+1.(2)設(shè)李思同學(xué)在x年級(jí)y班.由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,因此,李思是2016年入學(xué)的.A2=4+2=6,A3=8+1=9.由加密規(guī)則,得:,解得x=8,y=4,所以,李思在8年級(jí)4班.A4=2+1=3,A5=2+1=3,33-2=31,根據(jù)加密規(guī)則,原編號(hào)的末兩位數(shù)為13.綜上,李思同學(xué)的編號(hào)是16080413.【點(diǎn)睛】本題主要考查了實(shí)數(shù)與圖形,解二元一次方程組,截圖的關(guān)鍵在于能夠準(zhǔn)確讀懂題意.20.(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成48套GH型電子產(chǎn)品;(2)x=.【解析】【分析】(1)設(shè)x人加工G型裝置,y人加工H型裝置,由題意可得:,解方程組,再由G配件總數(shù)除以4可得總套數(shù);(2)由題意可知:3(6x+4m)=3(80-x)×4,再用含m的式子表示x.【詳解】解:(1)設(shè)x人加工G型裝置,y人加工H型裝置,由題意可得:解得:,6×32÷4=48(套),答:按照這樣的生產(chǎn)方式,工廠每天能配套組成48套GH型電子產(chǎn)品.(2)由題意可知:3(6x+4m)=3(80-x)×4,解得:x=,【點(diǎn)睛】本題考核知識(shí)點(diǎn):列方程組解應(yīng)用題.解題關(guān)鍵點(diǎn):找出相等關(guān)系,列出方程.21.(1)g(-1)=2g(-2)=-1(2)a=-4(3)a=,b=-4.【解析】【分析】(1)將x=-1和x=-2分別代入可得出答案;(2)將x=代入可得關(guān)于a的一元一次方程,解出即可;(3)由f(1)=0,把x=1代入可得關(guān)于a、b、k的方程,根據(jù)無(wú)論k為何值時(shí),都成立就可求出a、b的值.【詳解】(1)由題意得:g(-1)=-2×(-1)2-3×(-1)+1=2;g(-2)=-2×(-2)2-3×(-2)+1=-1;(2)由題意得:,解得:a=-4;(3)∵k無(wú)論為何值,總有f(1)=0,∴=0,則當(dāng)k=1、k=0時(shí),可得方程組,解得:.【點(diǎn)睛】本題考查了代數(shù)式求值、解一元一次方程、一元一次方程的解、解二元一次方程組等,讀懂新定義是解題的關(guān)鍵.22.(1);0≤x≤6時(shí),y=1.5x;x>6時(shí),y=6x-27;(2)該戶5月份水費(fèi)是21元.【分析】(1)根據(jù)3、4兩個(gè)月的用水量和相應(yīng)水費(fèi)列方程組求解可得a、c的值;當(dāng)0≤x≤6時(shí),水費(fèi)=用水量×此時(shí)單價(jià);當(dāng)x>6時(shí),水費(fèi)=前6立方水費(fèi)+超出部分水費(fèi),據(jù)此列式即可;(2)x=8代入x>6時(shí)y與x的函數(shù)關(guān)系式求解即可.【詳解】解:(1)根據(jù)題意,得:,解得:;當(dāng)0≤x≤6時(shí),y=1.5x;當(dāng)x>6時(shí),y=1.5×6+6(x-6)=6x-27;(2)當(dāng)x=8時(shí),y=6x-27=6×8-27=21.答:若某戶5月份的用水量為8米3,該戶5月份水費(fèi)是21元.【點(diǎn)睛】本題主要考查利用一次函數(shù)的模型解決實(shí)際問(wèn)題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實(shí)際意義準(zhǔn)確的列出解析式,再把對(duì)應(yīng)值代入求解.23.(1)見(jiàn)解析;(2)6元【分析】(1)設(shè)單價(jià)為20元的書(shū)買了x本,單價(jià)為24元的書(shū)買了y本,根據(jù)總價(jià)=單價(jià)×數(shù)量,結(jié)合購(gòu)買兩種書(shū)30本共花費(fèi)(700?38)元,即可得出關(guān)于x,y的二元一次方程組,解之即可得出x,y的值,結(jié)合x(chóng),y的值為整數(shù),即可得出小明搞錯(cuò)了;(2)設(shè)單價(jià)為20元的書(shū)買了a本,則單價(jià)為24元的書(shū)買了(30?a)本,筆記本的單價(jià)為b元,根據(jù)總價(jià)=單價(jià)×數(shù)量,即可得出關(guān)于a,b的二元一次方程,化簡(jiǎn)后可得出a=14+,結(jié)合0<b<10,且a,b均為整數(shù),可得出b=2或6,將b值代入a=14+中可求出a值,再結(jié)合單價(jià)為20元的書(shū)多于24元的書(shū),即可確定b值.【詳解】解:(1)設(shè)20元的書(shū)買了本,24元的書(shū)買了本,由題意,得,解得,∵,的值為整數(shù),故,的值不符合題意(只需求出一個(gè)即可)∴小明搞錯(cuò)了;(2)設(shè)20元的書(shū)買了本,則24元的書(shū)買了本,筆記本的單價(jià)為元,由題意,得:,化簡(jiǎn)得:∵,∴或6.當(dāng),,即20元的書(shū)買了15本,24元的書(shū)買了15本,不合題意舍去當(dāng),,即20元的書(shū)買了16本,則24元的書(shū)買了14本∴.答:筆記本的價(jià)格為6元.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用以及二元一次方程的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;(2)找準(zhǔn)等量關(guān)系,正確列出二元一次方程.24.(1)(-1,-2);(2)①結(jié)論:直線l⊥x軸.證明見(jiàn)解析;②結(jié)論:(s-m)+(t-n)=0.證明見(jiàn)解析【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a,b的值,可得結(jié)論.(2)①求出A,D的縱坐標(biāo),證明AD∥x軸,可得結(jié)論.②判斷出D(m+1,n-1),利用待定系數(shù)法,構(gòu)建方程組解決問(wèn)題即可.【詳解】解:(1),又,,,,,點(diǎn)先向右平移2個(gè)單位,再向下平移1個(gè)單位得到點(diǎn),.(2)①結(jié)論:直線軸.理由:,,,向右平移個(gè)單位,再向下平移1個(gè)單位得到點(diǎn),,,的縱坐標(biāo)相同,軸,直線,直線軸.②結(jié)論:.理由:是直線上一點(diǎn),連接,且的最小值為1,,點(diǎn),及點(diǎn)都是關(guān)于,的二元一次方程的解為坐標(biāo)的點(diǎn),,①②得到,,③②得到,,,,.【點(diǎn)睛】本題考查坐標(biāo)與圖形變化-平移,非負(fù)數(shù)的性質(zhì),待定系數(shù)法等知識(shí),解題的關(guān)鍵是熟練掌握平移變換的性質(zhì),學(xué)會(huì)利用參數(shù)解決問(wèn)題,屬于中考??碱}型.25.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結(jié)論.【詳解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則θ=-1,故答案為-1;(2)方程2x+3y=24一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)?,解?3<t<2.因?yàn)閠為整數(shù),所以t=-2,-1,0,1.(3)方程19x+8y=1908一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).∵,解得<t<12.5.因?yàn)閠為整數(shù),所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整數(shù)解有13組.【點(diǎn)睛】本題考查了二元一次方程的解,一元一次不等式的整數(shù)解,理解題意、掌握解題方法是本題的關(guān)鍵.2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 某著名企業(yè)六局高層建筑鋁合金模板施工技術(shù)
- 某著名企業(yè)外貿(mào)企業(yè)如何開(kāi)某省市場(chǎng)
- 《GBT 16777-2008建筑防水涂料試驗(yàn)方法》專題研究報(bào)告
- 《GBT 4702.16-2008金屬鉻 硫含量的測(cè)定 紅外線吸收法和燃燒中和滴定法》專題研究報(bào)告
- 道路安全培訓(xùn)季度計(jì)劃課件
- 道路交通安全知識(shí)課件
- 2025-2026年西師版初三歷史上冊(cè)期末真題和答案
- 2025-2026年蘇教版九年級(jí)化學(xué)上冊(cè)期末題庫(kù)試題附答案
- 返校安全規(guī)范培訓(xùn)
- 三年(2023-2025)黑龍江中考語(yǔ)文真題分類匯編:專題12 說(shuō)明文閱讀(解析版)
- 民辦學(xué)校退費(fèi)管理制度
- T/CIE 115-2021電子元器件失效機(jī)理、模式及影響分析(FMMEA)通用方法和程序
- KubeBlocks把所有數(shù)據(jù)庫(kù)運(yùn)行到K8s上
- 廣東省江門市蓬江區(qū)2025年七年級(jí)上學(xué)期語(yǔ)文期末考試試卷及答案
- 蘇州市施工圖無(wú)障礙設(shè)計(jì)專篇參考樣式(試行)2025
- 等腰三角形重難點(diǎn)題型歸納(七大類型)原卷版-2024-2025學(xué)年北師大版八年級(jí)數(shù)學(xué)下冊(cè)重難點(diǎn)題型突破
- 臨時(shí)用電變壓器安裝方案
- 社會(huì)工作項(xiàng)目調(diào)研方案含問(wèn)卷及訪談提綱
- 2025年包頭職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)完整版
- 全國(guó)高校輔導(dǎo)員素質(zhì)能力大賽試題(談心談話、案例分析)
- 《XXXX煤礦隱蔽致災(zāi)地質(zhì)因素普查報(bào)告》審查意見(jiàn)
評(píng)論
0/150
提交評(píng)論