版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2026屆北京市第171中學高二數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù),若實數(shù)是函數(shù)的零點,且,則()A. B.C. D.無法確定2.等差數(shù)列前項和,已知,,則的值是().A. B.C. D.3.某救援隊有5名隊員,其中有1名隊長,1名副隊長,在一次救援中需隨機分成兩個行動小組,其中一組2名隊員,另一組3名隊員,則正、副隊長不在同一組的概率為()A. B.C. D.4.若拋物線焦點與橢圓的右焦點重合,則的值為A. B.C. D.5.在空間直角坐標系下,點關于平面的對稱點的坐標為()A. B.C. D.6.設函數(shù)的導函數(shù)是,若,則()A. B.C. D.7.某企業(yè)甲車間有200人,乙車間有300人,現(xiàn)用分層抽樣的方法在這兩個車間中抽取25人進行技能考核,則從甲車間抽取的人數(shù)應為()A.5 B.10C.8 D.98.設.若,則=()A. B.C. D.e9.函數(shù)的部分圖像為()A. B.C. D.10.已知橢圓的長軸長是短軸長的倍,左焦點、右頂點和下頂點分別為,坐標原點到直線的距離為,則的面積為()A. B.4C. D.11.已知拋物線內(nèi)一點,過點的直線交拋物線于,兩點,且點為弦的中點,則直線的方程為()A. B.C D.12.年月日,很多人的微信圈都在轉(zhuǎn)發(fā)這樣一條微信:“,所遇皆為對,所做皆稱心””.形如“”的數(shù)字叫“回文數(shù)”,即從左到右讀和從右到左讀都一樣的正整數(shù),則位的回文數(shù)共有()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)有且僅有兩個不同的零點,則實數(shù)的取值范圍是__________.14.在單位正方體中,點E為AD的中點,過點B,E,的平面截該正方體所得的截面面積為______.15.已知直線l1:(1)x+y﹣2=0與l2:(1)x+ay﹣4=0平行,則a=_____.16.若數(shù)列滿足,則稱為“追夢數(shù)列”.已知數(shù)列為“追夢數(shù)列”,且,則數(shù)列的通項公式__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,動點,滿足,記點的軌跡為(1)請說明是什么曲線,并寫出它的方程;(2)設不過原點且斜率為的直線與交于不同的兩點,,線段的中點為,直線與交于兩點,,請判斷與的關系,并證明你的結(jié)論18.(12分)在平面直角坐標系中,已知點在橢圓上,其中為橢圓E的離心率(1)求b的值;(2)A,B分別為橢圓E的左右頂點,過點的直線l與橢圓E相交于M,N兩點,直線與交于點T,求證:19.(12分)為慶祝中國共產(chǎn)黨成立100周年,某校舉行了黨史知識競賽,在必答題環(huán)節(jié),甲、乙兩位選手分別從3道選擇題(1)甲至少抽到1道填空題(2)甲答對的題數(shù)比乙多的概率.20.(12分)某外語學校的一個社團中有7名同學,其中2人只會法語;2人只會英語,3人既會法語又會英語,現(xiàn)選派3人到法國的學校交流訪問(1)在選派的3人中恰有2人會法語的概率;(2)在選派的3人中既會法語又會英語的人數(shù)X的分布列和數(shù)學期望21.(12分)某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):單價x(元)88.28.48.68.89銷量y(件)908483807568(1)求回歸直線方程中的實數(shù);(2)根據(jù)回歸方程預測當單價為10元時的銷量.22.(10分)已知函數(shù).(1)求曲線在點處的切線方程;(2)求在區(qū)間上的最值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用函數(shù)在遞減求解.【詳解】因為函數(shù)在遞減,又實數(shù)是函數(shù)的零點,即,又因為,所以,故選:A2、C【解析】由題意,設等差數(shù)列的公差為,則,故,故,故選3、C【解析】求出基本事件總數(shù)與正、副隊長不在同一組的基本事件個數(shù),即可求出答案.【詳解】基本事件總數(shù)為正、副隊長不在同一組的基本事件個數(shù)為故正、副隊長不在同一組的概率為.故選:C.4、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D5、C【解析】根據(jù)空間坐標系中點的對稱關系求解【詳解】點關于平面的對稱點的坐標為,故選:C6、A【解析】求導后,令,可求得,再令可求得結(jié)果.【詳解】因為,所以,所以,所以,所以,所以.故選:A【點睛】本題考查了導數(shù)的計算,考查了求導函數(shù)值,屬于基礎題.7、B【解析】根據(jù)分層抽樣的定義即可求解.【詳解】從甲車間抽取的人數(shù)為人故選:B8、D【解析】由題可得,將代入解方程即可.【詳解】∵,∴,∴,解得.故選:D.9、D【解析】先判斷奇偶性排除C,再利用排除B,求導判斷單調(diào)性可排除A.【詳解】因為,所以為偶函數(shù),排除C;因為,排除B;當時,,,當時,,所以函數(shù)在區(qū)間上單調(diào)遞減,排除A.故選:D10、C【解析】設,根據(jù)題意,可知的方程為直線,根據(jù)原點到直線的距離建立方程,求出,進而求出,的值,以及到直線的距離,再根據(jù)面積公式,即可求出結(jié)果.【詳解】設,由題意可知,其中,所以的方程為,即所以原點到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.11、B【解析】利用點差法求出直線斜率,即可得出直線方程.【詳解】設,則,兩式相減得,即,則直線方程為,即.故選:B.12、C【解析】根據(jù)“回文數(shù)”的對稱性,只需計算前位數(shù)的排法種數(shù)即可,確定這四位數(shù)的選數(shù)的種數(shù),利用分步乘法計數(shù)原理可得結(jié)果.【詳解】根據(jù)“回文數(shù)”的對稱性,只需計算前位數(shù)的排法種數(shù)即可,首位數(shù)不能放零,首位數(shù)共有種選擇,第二位、第三位、第四位數(shù)均有種選擇,因此,位的回文數(shù)共有個.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】函數(shù)有兩個不同零點即y=a與g(x)=圖像有兩個交點,畫出近似圖象即得a的范圍﹒【詳解】∵函數(shù)有且僅有兩個不同的零點,令,則y=a與g(x)=圖像有兩個交點,∵,∴當時,,單調(diào)遞減,當時,,單調(diào)遞增,∴當時,,作出函數(shù)與的圖象,∴當時,y=a與g(x)有兩個交點﹒故答案為:﹒14、【解析】根據(jù)題意,取的中點,連接、、、,分析可得四邊形為平行四邊形,則要求的截面就是四邊形,進而可得為菱形,連接、,求出、的長,計算可得答案【詳解】根據(jù)題意,取的中點,連接、、、,易得,,則四邊形為平行四邊形,過點,,的截面就是,又由正方體為單位正方體,則,則為菱形,連接、,易得,,則,即要求截面的面積為,故答案為:15、2【解析】根據(jù)兩直線平行的充要條件求解【詳解】因為已知兩直線平行,所以,解得故答案為:【點睛】本題考查兩直線平行的充要條件,兩直線平行的充要條件是,或,在均不為0時,用表示容易理解與記憶16、##【解析】根據(jù)題意,由“追夢數(shù)列”的定義可得“追夢數(shù)列”是公比為的等比數(shù)列,進而可得若數(shù)列為“追夢數(shù)列”,則為公比為3的等比數(shù)列,進而由等比數(shù)列的通項公式可得答案【詳解】根據(jù)題意,“追夢數(shù)列”滿足,即,則數(shù)列是公比為的等比數(shù)列.若數(shù)列為“追夢數(shù)列”,則.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)橢圓,(2),證明見解析【解析】(1)結(jié)合橢圓第一定義直接判斷即可求出的軌跡為;(2)設直線的方程為,,,聯(lián)立橢圓方程,寫出韋達定理;由中點公式求出點,進而得出直線方程,聯(lián)立橢圓方程求出,結(jié)合弦長公式可求,可轉(zhuǎn)化為,結(jié)合韋達定理可化簡,進而得證.【小問1詳解】設,,則因為,滿足,即動點表示以點,為左、右焦點,長軸長為4,焦距為的橢圓,其軌跡的方程為;【小問2詳解】可以判斷出,下面進行證明:設直線的方程為,,,由方程組,得①,方程①判別式為,由,即,解得且由①得,,所以點坐標為,直線方程為,由方程組,得,,所以又所以.18、(1)1(2)證明見解析【解析】(1)根據(jù)點在橢圓E上建立方程,結(jié)合,然后解出方程即可;(2)聯(lián)立直線與橢圓的方程,表示出直線與,求得交點的坐標,再分別表示出直線和的斜率并作差,通過韋達定理證明直線和的斜率相等即可.【小問1詳解】由點在橢圓E上,得:又,即解得:【小問2詳解】依題意,得,且直線l與x軸不會平行設直線l的方程為,,由方程組消去x可得:則有:,且直線的方程為,直線的方程為由方程組可得:設直線的斜率分別是,則有:可得:又可得:故【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關系,并結(jié)合題設條件建立有關參變量的等量關系(2)涉及到直線方程時,務必考慮全面,不要忽略直線斜率為或不存在等特殊情形請考生在第22-23題中任選一題作答,如果多做,則按所做的第一題計分19、(1);(2).【解析】(1)把3道選擇題(2)設,分別表示甲答對1道題,2道題的事件,,分別表示乙答對0道題,1道題的事件,分別求出它們的概率,甲答對的題數(shù)比乙多這個事件是,然后由相互獨立的事件和互斥事件的概率公式計算【詳解】解:(1)記3道選擇題則試驗的樣本空間,.共有10個樣本點,且每個樣本點是等可能發(fā)生的,所以這是一個古典概型.記事件A=“甲至少抽到1道填空題,.所以,,.所以,.因此,甲至少抽到1道填空題(2)設,分別表示甲答對1道題,2道題的事件,分別表示乙答對0道題,1道題的事件,根據(jù)獨立性假定,得,.,.記事件B=“甲答對的題數(shù)比乙多”,則,且,,兩兩互斥,與,與,與分別相互獨立,所以..因此,甲答對的題數(shù)比乙多的概率為.20、(1)(2)分布列見解析;【解析】(1)利用組合的知識計算出基本事件總數(shù)和滿足題意的基本事件數(shù),根據(jù)古典概型概率公式求得結(jié)果;(2)確定所有可能的取值,根據(jù)超幾何分布概率公式可計算出每個取值對應的概率,進而得到分布列和數(shù)學期望.【小問1詳解】名同學中,會法語的人數(shù)為人,從人中選派人,共有種選法;其中恰有人會法語共有種選法;選派的人中恰有人會法語的概率.【小問2詳解】由題意可知:所有可能的取值為,;;;;的分布列為:數(shù)學期望為21、(1)25
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 丙醛(丙酸)裝置操作工崗前強化考核試卷含答案
- 2026培訓專員招聘試題及答案
- 2026年時事政治測試題庫及參考答案(完整版)
- 2026年校園招聘考試試題及完整答案【全優(yōu)】
- 2026年武漢海事職業(yè)學院單招職業(yè)傾向性考試題庫附答案
- 2026年浙江金華科貿(mào)職業(yè)技術學院單招職業(yè)傾向性考試模擬測試卷及答案1套
- 2026年湖北工業(yè)職業(yè)技術學院單招職業(yè)技能考試模擬測試卷新版
- 2025河南漯河市衛(wèi)生健康委員會所屬事業(yè)單位人才引進88人備考題庫及答案1套
- 2025河南鄭州理工職業(yè)學院招聘9人備考題庫含答案
- 歷史文化名城傳統(tǒng)街巷消防摩托車通行與操作規(guī)范
- 2023-2024學年蘇科版數(shù)學八年級上冊專項練習:實數(shù)(章節(jié)復習+考點講練)解析版
- 腹痛病的中醫(yī)護理查房
- 鄉(xiāng)間的小路男聲合唱簡譜
- 04S519小型排水構(gòu)筑物(含隔油池)圖集
- JT-T 1448-2022 公路隧道用射流風機
- MBD技術應用課件
- 汽車修理廠經(jīng)營方案
- 對現(xiàn)行高中地理新教材理解上的幾點困惑與思考 論文
- 重慶市豐都縣2023-2024學年七年級上學期期末數(shù)學試題
- 美術教學中的跨學科教學策略
- mc尼龍澆鑄工藝
評論
0/150
提交評論