河北省邯鄲市永年區(qū)第二中學2026屆高二數(shù)學第一學期期末復習檢測模擬試題含解析_第1頁
河北省邯鄲市永年區(qū)第二中學2026屆高二數(shù)學第一學期期末復習檢測模擬試題含解析_第2頁
河北省邯鄲市永年區(qū)第二中學2026屆高二數(shù)學第一學期期末復習檢測模擬試題含解析_第3頁
河北省邯鄲市永年區(qū)第二中學2026屆高二數(shù)學第一學期期末復習檢測模擬試題含解析_第4頁
河北省邯鄲市永年區(qū)第二中學2026屆高二數(shù)學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北省邯鄲市永年區(qū)第二中學2026屆高二數(shù)學第一學期期末復習檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的二項展開式中,二項式系數(shù)最大的項是第()項.A.6 B.5C.4和6 D.5和72.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其意思為:有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了()A.192

里 B.96

里C.48

里 D.24

里3.如圖,用4種不同的顏色對A,B,C,D四個區(qū)域涂色,要求相鄰的兩個區(qū)域不能用同一種顏色,則不同的涂色方法有()A.24種 B.48種C.72種 D.96種4.在區(qū)間上隨機取一個數(shù),則事件“曲線表示圓”的概率為()A. B.C. D.5.若傾斜角為的直線過兩點,則實數(shù)()A. B.C. D.6.函數(shù)f(x)=-1+lnx,對?x0,f(x)≥0成立,則實數(shù)a的取值范圍是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)7.某高中學校高二和高三年級共有學生人,為了解該校學生的視力情況,現(xiàn)采用分層抽樣的方法從三個年級中抽取一個容量為的樣本,其中高一年級抽取人,則高一年級學生人數(shù)為()A. B.C. D.8.已知直線和圓,則“”是“直線與圓相切”的().A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件9.若拋物線的焦點為,則其標準方程為()A. B.C. D.10.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直11.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.12.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)分別是平面的法向量,若,則實數(shù)的值是________14.已知實數(shù),,,滿足,,,則的最大值是______15.“第七屆全國畫院美術(shù)作品展”于2021年12月2日至2022年2月20日在鄭州美術(shù)館展出.已知某油畫作品高2米,寬6米,畫的底部離地有2.7米(如圖所示).有一身高為1.8米的游客從正面觀賞它(該游客頭頂E到眼睛C的距離為10),設(shè)該游客離墻距離CD為x米,視角為.為使觀賞視角最大,x應為___________米.16.已知圓,直線與圓C交于A,B兩點,且,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設(shè):函數(shù)的定義域為;:不等式對任意的恒成立(1)如果是真命題,求實數(shù)的取值范圍;(2)如果“”為真命題,“”為假命題,求實數(shù)的取值范圍18.(12分)唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登上望烽火,黃昏飲馬傍交河,”詩中隱含著一個有趣的“將軍飲馬”問題,這是一個數(shù)學問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回軍營,怎樣走才能使得總路程最短?在平面直角坐標系中,將軍從點處出發(fā),河岸線所在直線方程為,并假定將軍只要到達軍營所在區(qū)域即為回到軍營.軍營所在區(qū)域可表示為.(1)求“將軍飲馬”的最短總路程;(2)因軍情緊急,將軍來不及飲馬,直接從A點沿傾斜角為45°的直線路徑火速回營,已知回營路徑與軍營邊界的交點為M,N,軍營中心與M,N連線的斜率分別為,,試求的值.19.(12分)已知橢圓C與橢圓有相同的焦點,且長軸長為4(1)求C的標準方程;(2)直線,分別經(jīng)過點與C相切,切點分別為A,B,證明:20.(12分)已知函數(shù)其中.(1)當時,求函數(shù)的單調(diào)區(qū)間;(2)當時,函數(shù)有兩個零點,,滿足,證明.21.(12分)已知圓C:的半徑為1(1)求實數(shù)a的值;(2)判斷直線l:與圓C是否相交?若不相交,請說明理由;若相交,請求出弦長22.(10分)已知函數(shù)(e為自然對數(shù)的底數(shù)),(),.(1)若直線與函數(shù),的圖象都相切,求a的值;(2)若方程有兩個不同的實數(shù)解,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由二項展開的中間項或中間兩項二項式系數(shù)最大可得解.【詳解】因為二項式展開式一共11項,其中中間項的二項式系數(shù)最大,易知當r=5時,最大,即二項展開式中,二項式系數(shù)最大的為第6項.故選:A2、B【解析】由題可得此人每天走的步數(shù)等比數(shù)列,根據(jù)求和公式求出首項可得.【詳解】由題意可知此人每天走的步數(shù)構(gòu)成為公比的等比數(shù)列,由題意和等比數(shù)列的求和公式可得,解得,第此人第二天走里.故選:B3、B【解析】按涂色順序進行分四步,根據(jù)分步乘法計數(shù)原理可得解.【詳解】按涂色順序進行分四步:涂A部分時,有4種涂法;涂B部分時,有3種涂法;涂C部分時,有2種涂法;涂D部分時,有2種涂法.由分步乘法計數(shù)原理,得不同的涂色方法共有種.故選:B.4、D【解析】先求出曲線表示圓參數(shù)的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D5、A【解析】解方程即得解.【詳解】解:由題得.故選:A6、B【解析】由導數(shù)求得的最小值,由最小值非負可得的范圍【詳解】定義域是,,若,則在上恒成立,單調(diào)遞增,,不合題意;若,則時,,遞減,時,,遞增,所以時,取得極小值也是最小值,由題意,解得故選:B7、B【解析】先得到從高二和高三年級抽取人,再利用分層抽樣進行求解.【詳解】設(shè)高一年級學生人數(shù)為,因為從三個年級中抽取一個容量為的樣本,且高一年級抽取人,所以從高二和高三年級抽取人,則,解得,即高一年級學生人數(shù)為.故選:B8、B【解析】首先求出直線與圓相切時的取值,再根據(jù)充分必要條件的定義判斷.【詳解】若直線與圓相切,則圓心到直線的距離,則,解得,所以“”是“直線與圓相切”的充分不必要條件.故選:B【點睛】本題考查直線與圓的位置關(guān)系,充分必要條件,重點考查計算,理解能力,屬于基礎(chǔ)題型.9、D【解析】由題意設(shè)出拋物線的標準方程,再利用焦點為建立,解方程即可.【詳解】由題意,設(shè)拋物線標準方程為,所以,解得,所以拋物線標準方程為.故選:D10、B【解析】根據(jù)可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.11、B【解析】根據(jù)拋物線和寫出焦點坐標,利用題干中的坐標相等,解出,結(jié)合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.12、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當時,,故故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)分別是平面的法向量,且,則有求解.【詳解】因為分別是平面的法向量,且所以所以解得故答案為:4【點睛】本題主要考查空間向量垂直,還考查了運算求解的能力,屬于基礎(chǔ)題.14、10【解析】采用數(shù)形結(jié)合法,將所求問題轉(zhuǎn)化為兩點到直線的距離和的倍,結(jié)合梯形中位線性質(zhì)和三角形三邊關(guān)系可求得答案.【詳解】由,,,可知,點在圓上,由,即為等腰直角三角形,結(jié)合點到直線距離公式可理解為圓心到直線的距離,變形得,即所求問題可轉(zhuǎn)化為兩點到直線的距離和的倍,作于于,中點為,中點為,由梯形中位線性質(zhì)可得,,作于,于,連接,則,當且僅當與重合,三點共線時,有最大值,由點到直線距離公式可得,由幾何性質(zhì)可得,,此時,故的最大值為.故答案為:10.15、【解析】設(shè),進而得到,,從而求出,再利用基本不等式即可求得答案.【詳解】設(shè),則,,所以,當且僅當時取“=”.所以該游客離墻距離為米時,觀賞視角最大.故答案為:.16、-2【解析】將圓的一般方程化為標準方程,結(jié)合垂徑定理和勾股定理表示出圓心到弦的距離,再由點到直線的距離公式表示出圓心到弦的距離,解方程即可求得的值.【詳解】解:將圓的方程化為標準方程可得,圓心為,半徑圓C與直線相交于、兩點,且,由垂徑定理和勾股定理得圓心到直線的距離為,由點到直線距離公式得,所以,解得,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由對數(shù)函數(shù)性質(zhì),轉(zhuǎn)化為對任意的恒成立,結(jié)合二次函數(shù)的性質(zhì),即可求解;(2)利用基本不等式,求得當命題是真命題,得到,結(jié)合“”為真命題,“”為假命題,分類討論,即可求解.【小問1詳解】解:因為是真命題,所以對任意的恒成立,當時,不等式,顯然在不能恒成立;當時,則滿足解得,故實數(shù)的取值范圍為【小問2詳解】解:因為,所以,當且僅當時,等號成立若是真命題,則;因為“”為真命題,“”為假命題,所以與一真一假當真假時,所以;當假真時,所以,綜上,實數(shù)的取值范圍為18、(1);(2).【解析】(1)根據(jù)題意作出圖形,然后求出關(guān)于直線的對稱點,進而根據(jù)圓的性質(zhì)求出到圓上的點的最短距離即可;(2)將直線方程代入圓的方程并化簡,進而結(jié)合韋達定理求得答案.【小問1詳解】若軍營所在區(qū)域為,圓:的圓心為原點,半徑為,作圖如下:設(shè)將軍飲馬點為,到達營區(qū)點為,設(shè)為A關(guān)于直線的對稱點,因為,所以線段的中點為,則,又,聯(lián)立解得:,即,所以總路程,要使得總路程最短,只需要最短,即點到圓上的點的最短距離,即為.【小問2詳解】過點A傾斜角為45°的直線方程為:,設(shè)兩個交點,聯(lián)立,消去y得.由韋達定理,,.19、(1);(2)證明見解析.【解析】(1)根據(jù)共焦點求出參數(shù)c,由長軸長求參數(shù)a,即可確定C的標準方程;(2)令過切線為,聯(lián)立橢圓C結(jié)合得到關(guān)于k的一元二次方程,根據(jù)根與系數(shù)關(guān)系即可證明結(jié)論.【小問1詳解】由題設(shè),對于橢圓C有,又橢圓的焦點為,則,所以,故C的標準方程.【小問2詳解】由題設(shè),直線,的斜率必存在,令橢圓C的切線方程為,聯(lián)立橢圓方程并整理可得:,由相切關(guān)系知:,整理得:,所以,即直線,相互垂直,則.20、(1)單調(diào)遞增區(qū)間,無遞減區(qū)間;(2)證明見解析【解析】(1)求出函數(shù)的導數(shù),從而判斷其正負,確定函數(shù)的單調(diào)區(qū)間;(2)根據(jù)題意可得到,進而變形為,然后換元令,將證明的問題轉(zhuǎn)換為成立的問題,從而構(gòu)造新函數(shù),求新函數(shù)的導數(shù),判斷其單調(diào)性,求其最值,進而證明不等式成立.【小問1詳解】時,,,令,當時,,當時,,故,則,故是單調(diào)遞增函數(shù),即的單調(diào)遞增區(qū)間為,無遞減區(qū)間;【小問2詳解】當時,函數(shù)有兩個零點,,滿足,即,所以,則,令,由于,則,則x2=tx故,要證明,只需證明,即證,設(shè),令,則,當時,,即在時為增函數(shù),故,即,所以在時為增函數(shù),即,即,故,即.【點睛】本題考查了利用導數(shù)求函數(shù)的單調(diào)區(qū)間以及涉及到零點的不等式的證明問題,解答時要注意導數(shù)的應用,主要是根據(jù)導數(shù)的正負判斷函數(shù)的單調(diào)性,進而求函數(shù)極值或最值,解答的關(guān)鍵時對函數(shù)式或者不等式進行合理的變形,進而能構(gòu)造新的函數(shù),利用新的函數(shù)的單調(diào)性或最值達到證明不等式成立的目的m.21、(1);(2)直線l與圓C相交,.【解析】(1)利用配方法進行求解即可;(2)根據(jù)點到直線距離公式,結(jié)合圓的弦長公式進行求解即可.【小問1詳解】將化為標準方程得:因為圓C的半徑為1,所以,得【小問2詳解】由(1)知圓C的圓心為,半徑為1設(shè)圓心C到直線l的距離為d,則,所以直線l與圓C相交,設(shè)其交點為A,B,則,即22、(1);(2).【解析】(1)根據(jù)導數(shù)的幾何意義進行求解即可;(2)利用常變量分離法,通過構(gòu)造新函數(shù),由方程有兩個不同的實數(shù)解問題,轉(zhuǎn)化為兩個函數(shù)的圖象有兩個交點問題,利用導數(shù)進行求解即可.【小問1詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論