版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆天津市六校高二上數(shù)學期末質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列滿足,則等于()A. B.C. D.2.在空間直角坐標系中,點關于平面的對稱點的坐標是()A. B.C. D.3.“五一”期間,甲、乙、丙三個大學生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來后,三人對去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實是甲、乙、丙三人陳述都只對了一半(關于去向的地點僅對一個).根據(jù)以上信息,可判斷下面說法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南4.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.45.某學習小組研究一種衛(wèi)星接收天線(如圖①所示),發(fā)現(xiàn)其曲面與軸截面的交線為拋物線,在軸截面內(nèi)的衛(wèi)星波束呈近似平行狀態(tài)射入形為拋物線的接收天線,經(jīng)反射聚焦到焦點處(如圖②所示).已知接收天線的口徑(直徑)為3.6m,深度為0.6m,則該拋物線的焦點到頂點的距離為()A.1.35m B.2.05mC.2.7m D.5.4m6.已知,分別為橢圓的左右焦點,為坐標原點,橢圓上存在一點,使得,設的面積為,若,則該橢圓的離心率為()A. B.C. D.7.過雙曲線的右頂點作斜率為的直線,該直線與雙曲線的兩條漸近線的交點分別為.若,則雙曲線的離心率是A. B.C. D.8.函數(shù)在上是單調(diào)遞增函數(shù),則的最大值等于()A.2 B.3C.5 D.69.設兩個變量與之間具有線性相關關系,相關系數(shù)為,回歸方程為,那么必有()A.與符號相同 B.與符號相同C.與符號相反 D.與符號相反10.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.11.設是橢圓的兩個焦點,是橢圓上一點,且.則的面積為()A.6 B.C.8 D.12.若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則下列不等式一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果________14.已知春季里,甲地每天下雨的概率為,乙地每天下雨的概率大于0,且甲、乙兩地下雨相互獨立,則春季的一天里,已知乙地下雨的條件下,甲地也下雨的概率為___________.15.函數(shù)的導數(shù)_________________.16.已知函數(shù)是上的奇函數(shù),,對,成立,則的解集為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)城南公園種植了4棵棕櫚樹,各棵棕櫚樹成活與否是相互獨立的,成活率為p,設為成活棕櫚樹的株數(shù),數(shù)學期望.(1)求p的值并寫出的分布列;(2)若有2棵或2棵以上的棕櫚樹未成活,則需要補種,求需要補種棕櫚樹的概率.18.(12分)設函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的極值.19.(12分)正四棱柱的底面邊長為2,側(cè)棱長為4.E為棱上的動點,F(xiàn)為棱的中點.(1)證明:;(2)若E為棱上的中點,求直線BE到平面的距離.20.(12分)已知函數(shù)是定義在實數(shù)集上的奇函數(shù),且當時,(1)求的解析式;(2)若在上恒成立,求的取值范圍21.(12分)已知公差不為0的等差數(shù)列的前項和為,且,,成等比數(shù)列,且.(1)求的通項公式;(2)若,求數(shù)列的前n項和.22.(10分)已知(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知鈍角內(nèi)角A,B,C的對邊長分別a,b,c,若,,.求a的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用等差中項求出的值,進而可求得的值.【詳解】因為得,因此,.故選:A.2、C【解析】根據(jù)空間里面點關于面對稱的性質(zhì)即可求解.【詳解】在空間直角坐標系中,點關于平面的對稱點的坐標是.故選:C.3、D【解析】根據(jù)題意,先假設甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【詳解】由題意得,甲、乙、丙三人的陳述都只對了一半,假設甲去了北京正確,對于甲的陳述:則乙去西安錯誤,則乙去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南錯誤,乙去了北京也錯誤,故假設錯誤.假設乙去了西安正確,對于甲的陳述:則甲去了北京錯誤,則甲去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南正確,乙去了北京錯誤,此種假設滿足題意,故甲去了云南.故選:D4、C【解析】直接運用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C5、A【解析】根據(jù)題意先建立恰當?shù)淖鴺讼?,可設出拋物線方程,利用已知條件得出點在拋物線上,代入方程求得p值,進而求得焦點到頂點的距離.【詳解】如圖所示,在接收天線的軸截面所在平面上建立平面直角坐標系xOy,使接收天線的頂點(即拋物線的頂點)與原點O重合,焦點F在x軸上設拋物線的標準方程為,由已知條件可得,點在拋物線上,所以,解得,因此,該拋物線的焦點到頂點的距離為1.35m,故選:A.6、D【解析】由可得直角三角形,故,且,結(jié)合,聯(lián)立可得,即得解【詳解】由題意,故為直角三角形,,又,,又為直角三角形,故,,即,.故選:D.7、C【解析】直線l:y=-x+a與漸近線l1:bx-ay=0交于B,l與漸近線l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考點:直線與圓錐曲線的綜合問題;雙曲線的簡單性質(zhì)8、B【解析】由f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù),得到在[1,+∞)上,恒成立,從而解得a≤3,故a的最大值為3【詳解】解:∵f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù)∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)時,3x2≥3恒成立,∴a≤3,∴a的最大值是3故選:B9、A【解析】利用相關系數(shù)的性質(zhì),分析即得解【詳解】相關系數(shù)r為正,表示正相關,回歸直線方程上升,r為負,表示負相關,回歸直線方程下降,與r的符號相同故選:A10、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A11、B【解析】利用橢圓的幾何性質(zhì),得到,,進而利用得出,進而可求出【詳解】解:由橢圓的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因為,,所以,所以,故選:B12、D【解析】對選項A,令即可檢驗;對選項B,令即可檢驗;對選項C,令即可檢驗;對選項D,設出等差數(shù)列的首項和公比,然后作差即可.【詳解】若,則可得:,故選項A錯誤;若,則可得:,故選項B錯誤;若,則可得:,故選項C錯誤;不妨設的首項為,公差為,則有:則有:,故選項D正確故選:D二、填空題:本題共4小題,每小題5分,共20分。13、132【解析】根據(jù)程序框圖模擬程序運行,確定變量值的變化可得結(jié)論【詳解】程序運行時,變量值變化如下:,判斷循環(huán)條件,滿足,,;判斷循環(huán)條件,滿足,,;判斷循環(huán)條件,不滿足,輸出故答案為:13214、##0.5【解析】根據(jù)條件概率求概率的方法即可求得答案.【詳解】設A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率為p,則,因為甲乙兩地下雨相互獨立,所以,于是在乙地下雨的條件下,甲地也下雨的概率為.故答案為:.15、.【解析】根據(jù)初等函數(shù)的導數(shù)法則和導數(shù)的四則運算法則,準確運算,即可求解.【詳解】由題意,函數(shù),可得.故答案為:.16、【解析】根據(jù)題意可以設,求其導數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進而可知在上的單調(diào)性,由可知的零點,最后分類討論即可.【詳解】設,則對,,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當時,;當時,;當時,;當時,;若,則;若,則或,解得或或;則的解集為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),分布列見解析;(2).【解析】(1)根據(jù)二項分布知識即可求解;(2)將補種棕櫚樹的概率轉(zhuǎn)化為成活的概率,結(jié)合概率加法公式即可求解.【小問1詳解】由題意知,,又,所以,故未成活率為,由于所有可能的取值為0,1,2,3,4,所以,,,,,則的分布列為01234【小問2詳解】記“需要補種棕櫚樹”為事件A,由(1)得,,所以需要補種棕櫚樹的概率為.18、(1)單調(diào)遞減區(qū)間為和,單調(diào)遞增區(qū)間為(2)極小值,極大值為【解析】(1)先對函數(shù)求導,然后根據(jù)導數(shù)的正負可求出函數(shù)的單調(diào)區(qū)間,(2)根據(jù)(1)中求得單調(diào)區(qū)間可求出函數(shù)的極值【小問1詳解】.當變化時,,的變化情況如下表所示:00減極小值增極大值減的單調(diào)遞減區(qū)間為和,單調(diào)遞增區(qū)間為.【小問2詳解】由(1)可知在處取得極小值,在處取得極大值.的極小值為,極大值為.19、(1)證明見解析;(2).【解析】(1)根據(jù)給定條件建立空間直角坐標系,利用空間位置關系的向量證明計算作答.(2)利用(1)中坐標系,證明平面,再求點B到平面的距離即可作答.【小問1詳解】在正四棱柱中,以點D為原點,射線分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,則,因E為棱上的動點,則設,,而,,即,所以.【小問2詳解】由(1)知,點,,,,設平面的一個法向量,則,令,得,顯然有,則,而平面,因此,平面,于是有直線BE到平面的距離等于點B到平面的距離,所以直線BE到平面的距離是.20、(1),(2)實數(shù)的取值范圍是【解析】(1)根據(jù)函數(shù)奇偶性求解析式;(2)將恒成立轉(zhuǎn)化為令,恒成立,討論二次函數(shù)系數(shù),結(jié)合根的分布.【詳解】解:(1)因為函數(shù)是定義在實數(shù)集上的奇函數(shù),所以,當時,則所以當時所以(2)因為時,在上恒成立等價于即在上恒成立令,則①當時,不恒成立,故舍去②當時必有,此時對稱軸若即或時,恒成立因為,所以若即時,要使恒成立則有與矛盾,故舍去綜上,實數(shù)的取值范圍是【點睛】應用函數(shù)奇偶性可解決的四類問題及解題方法(1)求函數(shù)值:將待求值利用奇偶性轉(zhuǎn)化為已知區(qū)間上的函數(shù)值求解;(2)求解析式:先將待求區(qū)間上的自變量轉(zhuǎn)化到已知區(qū)間上,再利用奇偶性求解,或充分利用奇偶性構造關于的方程(組),從而得到的解析式;(3)求函數(shù)解析式中參數(shù)的值:利用待定系數(shù)法求解,根據(jù)得到關于待求參數(shù)的恒等式,由系數(shù)的對等性得參數(shù)的值或方程(組),進而得出參數(shù)的值;(4)畫函數(shù)圖象和判斷單調(diào)性:利用奇偶性可畫出另一對稱區(qū)間上的圖象及判斷另一區(qū)間上的單調(diào)性.21、(1)(2)【解析】(1)根據(jù)等差數(shù)列的通項公式和等比中項,可得,再根據(jù)等差數(shù)列的前項和公式,即可求出,,進而求出結(jié)果;(2)由(1)得,結(jié)合等比數(shù)列前項和公式和對數(shù)運算性質(zhì),利用分組求和,即可求出結(jié)果.【小問1詳解】解:設的公差為,由,,成等比數(shù)列可知,即,化簡得.由可得,所以.將代
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 簡筆畫網(wǎng)球培訓課件
- 簡筆字畫培訓
- 2026年高效時間管理策略制定與執(zhí)行指南
- 安全標識手冊講解
- 招商公演演講話術
- 班組安全調(diào)查問卷講解
- 教室消防逃生圖解指南
- 旅游團出發(fā)通知話術
- 股票培訓體系課件
- 公益性崗位政策培訓課件
- 2025年新水利安全員b證考試試題及答案
- 高壓氧進修課件
- 2025無人機物流配送網(wǎng)絡建設與運營效率提升研究報告
- 鋁錠采購正規(guī)合同范本
- 城市更新能源高效利用方案
- 2025 精神護理人員職業(yè)倦怠預防課件
- 春播行動中藥貼敷培訓
- 水泵維修安全知識培訓課件
- 木材采伐安全生產(chǎn)培訓課件
- DB1301∕T492-2023 電動車停放充電消防安全技術規(guī)范
- 部隊裝修合同(標準版)
評論
0/150
提交評論