版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年湖北省名師聯(lián)盟高二上數(shù)學期末教學質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線上點的橫坐標為4,則到拋物線焦點的距離等于()A.12 B.10C.8 D.62.函數(shù)在單調遞增的一個必要不充分條件是()A. B.C. D.3.圓與圓的交點為A,B,則線段AB的垂直平分線的方程是A. B.C. D.4.某學生2021年共參加10次數(shù)學競賽模擬考試,成績分別記為,,,…,,為研究該生成績的起伏變化程度,選用一下哪個數(shù)字特征最為合適()A.,,,…,的平均值; B.,,,…,的標準差;C.,,,…,的中位數(shù); D.,,,…,的眾數(shù);5.設異面直線、的方向向量分別為,,則異面直線與所成角的大小為()A. B.C. D.6.命題“?x∈[1,2],x2-a≤0”為真命題的一個充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤57.從某個角度觀察籃球(如圖1),可以得到一個對稱的平面圖形,如圖2所示,籃球的外輪形為圓O,將籃球表面的粘合線看成坐標軸和雙曲線,若坐標軸和雙曲線與圓O的交點將圓O的周長八等分,AB=BC=CD,則該雙曲線的離心率為()A. B.C. D.8.已知數(shù)列中,,(),則()A. B.C. D.29.已知雙曲線離心率為2,過點的直線與雙曲線C交于A,B兩點,且點P恰好是弦的中點,則直線的方程為()A. B.C. D.10.已知橢圓的長軸長,短軸長,焦距長成等比數(shù)列,則橢圓離心率為()A. B.C. D.11.已知橢圓的離心率,為橢圓上的一個動點,若定點,則的最大值為A. B.C. D.12.設點P是函數(shù)圖象上任意一點,點Q的坐標,當取得最小值時圓C:上恰有2個點到直線的距離為1,則實數(shù)r的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線l交橢圓于A,B兩點,線段AB的中點為,直線是線段AB的垂直平分線,若,D為垂足,則D點的軌跡方程是______14.在數(shù)列中,,,記是數(shù)列的前項和,則=___.15.設O為坐標原點,F(xiàn)為雙曲線的焦點,過F的直線l與C的兩條漸近線分別交于A,B兩點.若,且的內切圓的半徑為,則C的離心率為____________16.已知函數(shù)的單調遞減區(qū)間是,則的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的準線方程為(1)求C的方程;(2)直線與C交于A,B兩點,在C上是否存在點Q,使得直線QA,QB分別與y軸交于M,N兩點,且?若存在,求出點Q的坐標;若不存在,說明理由18.(12分)已知等差數(shù)列的公差,前3項和,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.19.(12分)已知橢圓:的四個頂點組成的四邊形的面積為,且經(jīng)過點.(1)求橢圓的方程;(2)若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于,兩點,與交于點,四邊形和的面積分別為,,求的最大值.20.(12分)平行六面體,(1)若,,,,,,求長;(2)若以頂點A為端點的三條棱長均為2,且它們彼此的夾角都是60°,則AC與所成角的余弦值21.(12分)函數(shù).(1)當時,解不等式;(2)若不等式對任意恒成立,求實數(shù)a的取值范圍.22.(10分)圓錐曲線的方程是.(1)若表示焦點在軸上的橢圓,求的取值范圍;(2)若表示焦點在軸上且焦距為的雙曲線,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)焦半徑公式即可求出【詳解】因為,所以,所以故選:C2、D【解析】求出導函數(shù),由于函數(shù)在區(qū)間單調遞增,可得在區(qū)間上恒成立,求出的范圍,再根據(jù)充分必要條件的定義即可判斷得解.【詳解】由題得,函數(shù)在區(qū)間單調遞增,在區(qū)間上恒成立,而在區(qū)間上單調遞減,選項中只有是的必要不充分條件.選項AC是的充分不必要條件,選項B是充要條件.故選:D3、A【解析】圓的圓心為,圓的圓心為,兩圓的相交弦的垂直平分線即為直線,其方程為,即;故選A.【點睛】本題考查圓的一般方程、兩圓的相交弦問題;處理直線和圓、圓和圓的位置關系時,往往結合平面幾何知識(如本題中,求兩圓的相交弦的垂直平分線的方程即為經(jīng)過兩圓的圓心的直線方程)可減小運算量.4、B【解析】根據(jù)平均數(shù)、標準差、中位數(shù)及眾數(shù)的概念即得.【詳解】根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的概念可知,平均數(shù)、中位數(shù)、眾數(shù)描述數(shù)據(jù)的集中趨勢,標準差描述數(shù)據(jù)的波動大小估計數(shù)據(jù)的穩(wěn)定程度.故選:B.5、C【解析】利用空間向量夾角的公式直接求解.【詳解】,,,.由異面直線所成角的范圍為,故異面直線與所成的角為.故選:C6、C【解析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應為的真子集,由選擇項不難得出答案【詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個充分不必要條件即為集合的真子集,由選擇項可知C符合題意.故選:C7、D【解析】設出雙曲線方程,通過做標準品和雙曲線與圓O的交點將圓的周長八等分,且AB=BC=CD,推出點在雙曲線上,然后求出離心率即可.【詳解】設雙曲線的方程為,則,因為AB=BC=CD,所以,所以,因為坐標軸和雙曲線與圓O的交點將圓O的周長八等分,所以在雙曲線上,代入可得,解得,所以雙曲線的離心率為.故選:D8、A【解析】由已知條件求出,可得數(shù)是以3為周期的周期數(shù)列,從而可得,進而可求得答案【詳解】因為,(),所以,所以數(shù)列的周期為3,,故選:A9、C【解析】運用點差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設,,則兩式相減得,即.又因為點P恰好是弦的中點,所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗滿足題意故選:C10、A【解析】由題意,,結合,求解即可【詳解】∵橢圓的長軸長,短軸長,焦距長成等比數(shù)列∴∴又∵∴∴,即∴e=又在橢圓e>0∴e=故選:A11、C【解析】首先求得橢圓方程,然后確定的最大值即可.【詳解】由題意可得:,據(jù)此可得:,橢圓方程為,設橢圓上點的坐標為,則,故:,當時,.本題選擇C選項.【點睛】本題主要考查橢圓方程問題,橢圓中的最值問題等知識,意在考查學生的轉化能力和計算求解能力.12、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數(shù)形結合得到取得最小值時a的值,得到圓心C,利用點到直線距離求出圓心C到直線的距離,數(shù)形結合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因為Q的坐標為,則在直線,過點A作⊥l于點,與半圓交于點,此時長為的最小值,則,所以直線:,與聯(lián)立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個點到直線的距離為1,則.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設直線l的方程為,代入橢圓方程并化簡,然后根據(jù)M為線段AB的中點結合根與系數(shù)的關系得到k,t間的關系,進而寫出線段AB的垂直平分線的直線方程,可以判斷它過定點E,再考慮直線l的斜率不存在的情況,根據(jù)題意可知,點D在以OE為直徑的圓上,最后求出點D的軌跡方程.【詳解】設直線l的方程為,代入橢圓方程并化簡得:,設,則,解得.因為直線是線段AB的垂直平分線,故直線:,即:令,此時,,于是直線過定點當直線l的斜率不存在時,,直線也過定點點D在以OE為直徑的圓上,則圓心為,半徑,所以點D軌跡方程為:14、930【解析】當為偶數(shù)時,,所以數(shù)列前60項中偶數(shù)項的和,當為奇數(shù)時,,因此數(shù)列是以1為首項,公差為2等差數(shù)列,前60項中奇數(shù)項的和為,所以.考點:遞推數(shù)列、等差數(shù)列.15、##【解析】,作出漸近線圖像,由題可知的內切圓圓心在x軸上,過內心作OA和AB的垂線,可得幾何關系,據(jù)此即可求解.【詳解】雙曲線漸近線OA與OB如圖所示,OA與OB關于x軸對稱,設△OAB的內切圓圓心為,則M在的平分線上,過點分別作于點于,由,則四邊形為正方形,由焦點到漸近線的距離為得,又,∴,且,∴,∴,則.故答案為:.16、【解析】先求出,由題設易知是的解集,利用根與系數(shù)關系求m、n,進而求的值.【詳解】由題設,,由單調遞減區(qū)間是,∴的解集為,則是的解集,∴,可得,故.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】(1)根據(jù)準線方程得出拋物線方程;(2)聯(lián)立直線和拋物線方程,由韋達定理結合求解即可.【小問1詳解】【小問2詳解】設,聯(lián)立,得由,得,假設C上存在點Q,使得直,則又即存在點滿足條件.18、(1)(2)【解析】(1)由,且成等比數(shù)列列式求解出和,然后寫出;(2)由,用錯位相減法求和即可.【詳解】(1)∵,∴①又∵成等比數(shù)列,∴,②∵,由①②解得:,,∴(2)∵,,∴兩式相減,得∴【點睛】本題考查了等差數(shù)列基本量的計算,錯位相減法求和,屬于中檔題.19、(1)(2)【解析】(1)因為在橢圓上,所以,又因為橢圓四個頂點組成的四邊形的面積為,所以,解得,所以橢圓的方程為(2)由(1)可知,設,則當時,,所以,直線的方程為,即,由得,則,,,又,所以,由,得,所以,所以,當,直線,,,,,所以當時,.點睛:在圓錐曲線中研究最值或范圍問題時,若題目的條件和結論能體現(xiàn)一種明確的函數(shù)關系,則可首先建立目標函數(shù),再求這個函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時常從以下方面考慮:①利用判別式來構造不等關系,從而確定參數(shù)的取值范圍;②利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的關鍵是在兩個參數(shù)之間建立等量關系;③利用隱含或已知的不等關系建立不等式,從而求出參數(shù)的取值范圍.20、(1);(2).【解析】(1)由,可得,再利用數(shù)量積運算性質即可得出;(2)以為一組基底,設與所成的角為,由求解.【小問1詳解】,,,,∴,;【小問2詳解】∵,,∴,∵,∴,∵=8,∴,設與所成的角為,則.21、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信用分析師崗前規(guī)章制度考核試卷含答案
- 科研助理安全檢查能力考核試卷含答案
- 釬焊工持續(xù)改進考核試卷含答案
- 耐火材料成型操作工安全應急能力考核試卷含答案
- 肉品分級員班組評比模擬考核試卷含答案
- 絕緣成型件制造工安全素養(yǎng)模擬考核試卷含答案
- 紡織染色機操作工安全知識競賽測試考核試卷含答案
- 鉆孔機司機標準化考核試卷含答案
- 水聲換能器制造工安全管理水平考核試卷含答案
- 水工監(jiān)測工保密意識強化考核試卷含答案
- 種植業(yè)合作社賬務處理
- 【麗江玉龍旅游薪酬制度的創(chuàng)新研究6100字】
- 公司兩權分離管理制度
- 車輛叉車日常檢查記錄表
- 廣東高校畢業(yè)生“三支一扶”計劃招募考試真題2024
- 膠帶機硫化工藝.課件
- 種雞免疫工作總結
- 河南省商丘市柘城縣2024-2025學年八年級上學期期末數(shù)學試題(含答案)
- 河南省信陽市2024-2025學年高二上學期1月期末英語試題(含答案無聽力原文及音頻)
- 給女朋友申請書
- 八下《桃花源記》《小石潭記》全文背誦(原文+譯文)
評論
0/150
提交評論