山東省濟南市章丘四中2025-2026學年數(shù)學高二上期末統(tǒng)考試題含解析_第1頁
山東省濟南市章丘四中2025-2026學年數(shù)學高二上期末統(tǒng)考試題含解析_第2頁
山東省濟南市章丘四中2025-2026學年數(shù)學高二上期末統(tǒng)考試題含解析_第3頁
山東省濟南市章丘四中2025-2026學年數(shù)學高二上期末統(tǒng)考試題含解析_第4頁
山東省濟南市章丘四中2025-2026學年數(shù)學高二上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省濟南市章丘四中2025-2026學年數(shù)學高二上期末統(tǒng)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)到與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列、這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23則該數(shù)列的第100項為()A.4862 B.4962C.4852 D.49522.某校高二年級統(tǒng)計了參加課外興趣小組的學生人數(shù),每人只參加一類,數(shù)據(jù)如下表:學科類別文學新聞經(jīng)濟政治人數(shù)400300100200若從參加課外興趣小組的學生中采用分層抽樣的方法抽取50名參加學習需求的問卷調(diào)查,則從文學、新聞、經(jīng)濟、政治四類興趣小組中抽取的學生人數(shù)分別為()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,103.若圓上恰有2個點到直線的距離為1,則實數(shù)的取值范圍為()A B.C. D.4.某制藥廠為了檢驗某種疫苗預防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設:“這種疫苗不能起到預防的作用”,利用列聯(lián)表計算得,經(jīng)查對臨界值表知.則下列結論中,正確的結論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預防的有效率為C.在犯錯誤的概率不超過的前提下認為“這種疫苗能起到預防的作用”D.有的把握認為這種疫苗不能起到預防生病的作用5.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.等差數(shù)列中,,,則()A.1 B.2C.3 D.47.若直線與平行,則m的值為()A.-2 B.-1或-2C.1或-2 D.18.已知點在橢圓上,與關于原點對稱,,交軸于點,為坐標原點,,則橢圓的離心率為()A. B.C. D.9.命題;命題.則A.“或”為假 B.“且”為真C.真假 D.假真10.函數(shù),的值域為()A. B.C. D.11.在中國共產(chǎn)黨建黨100周年之際,廣安市某中學組織了“黨史知識競賽”活動,已知該校共有高中學生1000人,用分層抽樣的方法從該校高中學生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學生人數(shù)為()A.960 B.720C.640 D.32012.變量與的數(shù)據(jù)如表所示,其中缺少了一個數(shù)值,已知關于的線性回歸方程為,則缺少的數(shù)值為()22232425262324▲2628A.24 B.25C.25.5 D.26二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的右頂點為P,右焦點F與拋物線的焦點重合,的頂點與的中心O重合.若與相交于點A,B,且四邊形為菱形,則的離心率為___________.14.拋物線的焦點坐標是______.15.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關系為________16.命題“,”是真命題,則的取值范圍是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p為“方程沒有實數(shù)根”,命題q為“”.(1)若p為真命題,求m的取值范圍;(2)若p和q有且只有一個為真命題,求m的取值范圍.18.(12分)已知數(shù)列滿足且(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和為.19.(12分)如圖,在三棱柱中,點在底面內(nèi)的射影恰好是點,是的中點,且滿足(1)求證:平面;(2)已知,直線與底面所成角的大小為,求二面角的大小20.(12分)已知點是橢圓上的一點,且橢圓的離心率.(1)求橢圓的標準方程;(2)兩動點在橢圓上,總滿足直線與的斜率互為相反數(shù),求證:直線的斜率為定值.21.(12分)已知數(shù)列滿足(1)求;(2)若,且數(shù)列的前n項和為,求證:22.(10分)已知三點共線,其中是數(shù)列中的第n項.(1)求數(shù)列的通項;(2)設,求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意可得數(shù)列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進一步即可得到的值【詳解】2,3,5,8,12,17,23,后項減前項可得1,2,3,4,5,6,所以,所以.所以.故選:D2、D【解析】利用分層抽樣的等比例性質(zhì)求抽取的樣本中所含各小組的人數(shù).【詳解】根據(jù)分層抽樣的等比例性質(zhì)知:文學小組抽取人數(shù)為人;新聞小組抽取人數(shù)為人;經(jīng)濟小組抽取人數(shù)為人;政治小組抽取人數(shù)為人;故選:D.3、A【解析】求得圓心到直線的距離,根據(jù)題意列出的不等關系式,即可求得的范圍.【詳解】因為圓心到直線的距離,故要滿足題意,只需,解得.故選:A.4、C【解析】根據(jù)的值與臨界值的大小關系進行判斷.【詳解】∵,,∴在犯錯誤的概率不超過的前提下認為“這種疫苗能起到預防的作用”,C對,由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯,由已知數(shù)據(jù)不能判斷這種疫苗預防的有效率為,B錯,由已知數(shù)據(jù)沒有的把握認為這種疫苗不能起到預防生病的作用,D錯,故選:C.5、B【解析】求出的等價條件,結合充分條件和必要條件的定義判斷可得出結論.【詳解】,因“”“”且“”“”,因此,“”是“”的必要不充分條件.故選:B.6、B【解析】根據(jù)給定條件利用等差數(shù)列性質(zhì)直接計算作答.【詳解】在等差數(shù)列中,因,,而,于是得,解得,所以.故選:B7、C【解析】利用兩直線平行的判定有,即可求參數(shù)值.【詳解】由題設,,可得或.經(jīng)驗證不重合,滿足題意,故選:C.8、B【解析】由,得到,結合,得到,進而求得,得出,結合離心率的定義,即可求解.【詳解】設,則,由,可得,所以,因為,可得,又由,兩式相減得,即,即,又因為,所以,即又由,所以,解得.故選:B.9、D【解析】命題:可能為0,不為0,假命題,命題:,為真命題,所以“或”為真命題,“且”為假命題.選D.10、D【解析】求出函數(shù)的導數(shù),根據(jù)導數(shù)在函數(shù)最值上的應用,即可求出結果.【詳解】因為,所以,令,又,所以或;所以當時,;當時,;所以在單調(diào)遞增,在上單調(diào)遞減;所以;又,,所以;所以函數(shù)的值域為.故選:D.11、D【解析】由分層抽樣各層成比例計算即可【詳解】設高二年級學生人數(shù)為,則,解得故選:D12、A【解析】可設出缺少的數(shù)值,利用表中的數(shù)據(jù),分別表示出、,將樣本中心點帶入回歸方程,即可求得參數(shù).【詳解】設缺少的數(shù)值為,則,,因為回歸直線方程經(jīng)過樣本點的中心,所以,解得.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設拋物線的方程為得到,把代入橢圓的方程化簡即得解.【詳解】設拋物線的方程為.由題得,代入橢圓的方程得,所以,所以,所以因為,所以.故答案為:【點睛】方法點睛:求橢圓的離心率常用的方法有:(1)公式法(根據(jù)已知求出代入離心率的公式即得解);(2)方程法(直接由已知得到關于離心率的方程解方程即得解).要根據(jù)已知條件靈活選擇方法求解.14、【解析】將拋物線的方程化為標準形式,即可求解出焦點坐標.【詳解】因為拋物線方程,焦點坐標為,且,所以焦點坐標為,故答案為:.15、相交【解析】由題意知,兩圓的圓心分別為(-2,0),(2,1),故兩圓的圓心距離為,兩圓的半徑之差為1,半徑之和為5,而1<<5,所以兩圓的位置關系為相交16、【解析】依題意可得,是真命題,參變分離得到在上有解,再利用構造函數(shù)利用函數(shù)的單調(diào)性計算可得.【詳解】,等價于在上有解設,,則在上單調(diào)遞減,在上單調(diào)遞增,又,,所以,即故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)方程無根,利用根的判別式小于0求出m的取值范圍;(2)和有且只有一個為真命題,分兩種情況進行求解,最終求出結果.【小問1詳解】由方程沒有實數(shù)根,得,解得:.所以m的取值范圍為.【小問2詳解】和有且只有一個為真命題,分為下列兩種情況:①當真且假時,且,得;②當假且真時,且,得.所以,的取值范圍為.18、(1)證明見解析,;(2).【解析】(1)對遞推公式進行變形,結合等差數(shù)列的定義進行求解即可;(2)運用裂項相消法進行求解即可.【小問1詳解】因為,且,所以即,所以數(shù)列是公差為2的等差數(shù)列.又,所以即;【小問2詳解】由(1)得,所以.故.19、(1)證明見解析;(2).【解析】(1)分別證明出和,利用線面垂直的判定定理即可證明;(2)以C為原點,為x、y、z軸正方向建立空間直角坐標系,用向量法求二面角的平面角.【小問1詳解】因為點在底面內(nèi)的射影恰好是點,所以面.因為面,所以.因為是的中點,且滿足.所以,所以.因為,所以,即,所以.因為,面,面,所以平面.【小問2詳解】∵面,∴直線與底面所成角為,即.因為,所以由(1)知,,因,所以,.如圖示,以C為原點,為x、y、z軸正方向建立空間直角坐標系.則,,,,所以,設,由得,,即.則.設平面BDC1的一個法向量為,則,不妨令,則.因為面,所以面的一個法向量為記二面角的平面角為,由圖知,為銳角.所以,即.所以二面角的大小為.20、(1)(2)證明見解析【解析】(1)根據(jù)已知條件列方程組,解方程組求得,從而求得橢圓的標準方程.(2)設出直線的方程并與橢圓方程聯(lián)立,由此求得,同理求得,從而化簡求得直線的斜率為定值.【小問1詳解】由題可知,解得,從而粚圓方程為.【小問2詳解】證明設直線的斜率為,則,,聯(lián)立直線與橢圓的方程,得,整理得,從而,于是,由題意得直線的斜率為,則,,同理可求得,于是即直線的斜率為定值.21、(1)(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論