2026屆江蘇省徐州市重點初中高二數學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
2026屆江蘇省徐州市重點初中高二數學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
2026屆江蘇省徐州市重點初中高二數學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
2026屆江蘇省徐州市重點初中高二數學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
2026屆江蘇省徐州市重點初中高二數學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆江蘇省徐州市重點初中高二數學第一學期期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數列,,,,…,是其第()項A.17 B.18C.19 D.202.已知F1(-1,0),F2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.3.如圖,M為OA的中點,以為基底,,則實數組等于()A. B.C. D.4.在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀古希臘的畢達哥拉斯學派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個直角三角形的斜邊長等于則這個直角三角形周長的最大值為()A. B.C. D.5.若任取,則x與y差的絕對值不小于1的概率為()A. B.C. D.6.已知數列滿足:,數列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.7.在正三棱錐S?ABC中,M、N分別是棱SC、BC的中點,且,若側棱,則正三棱錐S?ABC外接球的表面積是()A. B.C. D.8.已知點是點在坐標平面內的射影,則點的坐標為()A. B.C. D.9.已知圓的方程為,則實數m的取值范圍是()A. B.C. D.10.直線的傾斜角為()A. B.C. D.11.用反證法證明命題“a,b∈N,如果ab可以被5整除,那么a,b至少有1個能被5整除.”假設內容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1個不能被5整除12.如圖,正方形與矩形所在的平面互相垂直,在上,且平面,則M點的坐標為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若數列滿足,,則__________14.已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于A,B兩點,線段AB的長為5,若,那么△的周長是______.15.將參加冬季越野跑的名選手編號為:,采用系統(tǒng)抽樣方法抽取一個容量為的樣本,把編號分為組后,第一組的到這個編號中隨機抽得的號碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數為__________16.阿波羅尼斯與阿基米德、歐幾里得被稱為亞歷山大時期的數學三巨匠.“阿波羅尼斯圓”是他的代表成果之一:平面上動點P到兩定點A,B的距離之比滿足(且,t為常數),則點的軌跡為圓.已知在平面直角坐標系中,,,動點P滿足,則P點的軌跡為圓,該圓方程為_________;過點的直線交圓于兩點,且,則_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知雙曲線,過向雙曲線作兩條切線,切點分別為,,且.(1)證明:直線的方程為.(2)設為雙曲線的左焦點,證明:.18.(12分)已知數列的前項和(1)求數列的通項公式;(2)求數列的前項和19.(12分)已知向量,.(1)計算和;(2)求.20.(12分)已知橢圓C的兩焦點分別為,長軸長為6⑴求橢圓C的標準方程;⑵已知過點(0,2)且斜率為1的直線交橢圓C于A、B兩點,求線段AB的長度21.(12分)直線:和:(1)若兩直線垂直,求m的值;(2)若兩直線平行,求平行線間的距離22.(10分)已知函數(1)討論函數的單調性;(2)若,證明:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據題意,分析歸納可得該數列可以寫成,,,……,,可得該數列的通項公式,分析可得答案.【詳解】解:根據題意,數列,,,,…,,可寫成,,,……,,對于,即,為該數列的第20項;故選:D.【點睛】此題考查了由數列的項歸納出數列的通項公式,考查歸納能力,屬于基礎題.2、A【解析】由題得c=1,再根據△MF2N的周長=4a=8得a=2,進而求出b的值得解.【詳解】∵F1(-1,0),F2(1,0)是橢圓的兩個焦點,∴c=1,又根據橢圓的定義,△MF2N的周長=4a=8,得a=2,進而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學生對這些知識的掌握水平和分析推理能力.3、B【解析】根據空間向量減法的幾何意義進行求解即可.【詳解】,所以實數組故選:B4、C【解析】設直角三角形的兩條直角邊邊長分別為,則,根據基本不等式求出的最大值后,可得三角形周長的最大值.【詳解】設直角三角形的兩條直角邊邊長分別為,則.因為,所以,所以,當且僅當時,等號成立.故這個直角三角形周長的最大值為故選:C5、C【解析】根據題意,在平面直角坐標系中分析以及與差的絕對值不小于1所對應的平面區(qū)域,求出其面積,由幾何概型公式計算可得答案.【詳解】根據題意,,其對應的區(qū)域為正方形,其面積,若與差的絕對值不小于1,即,即或,對應的區(qū)域為圖中的陰影部分,其面積為,故與差的絕對值不小于1的概率.故選:C6、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當且僅當,即時取等號,所以故選:D7、A【解析】由題意推出平面,即平面,,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的體積【詳解】∵,分別為棱,的中點,∴,∵三棱錐為正棱錐,作平面,所以是底面正三角的中心,連接并延長交與點,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因為S?ABC是正三棱錐。所以,以,,為從同一定點出發(fā)的正方體三條棱,將此三棱錐補成以正方體,則它們有相同的外接球,正方體的體對角線就是球的直徑,,所以.故選:A.8、D【解析】根據空間中射影的定義即可得到答案.【詳解】因為點是點在坐標平面內的射影,所以的豎坐標為0,橫、縱坐標與A點的橫、縱坐標相同,所以點的坐標為.故選:D9、C【解析】根據可求得結果.【詳解】因為表示圓,所以,解得.故選:C【點睛】關鍵點點睛:掌握方程表示圓的條件是解題關鍵.10、D【解析】由直線斜率概念可寫出傾斜角的正切值,進而可求出傾斜角.【詳解】因為直線的斜率為,所以傾斜角.故選D【點睛】本題主要考查直線的傾斜角,由斜率的概念,即可求出結果.11、B【解析】由于反證法是命題的否定的一個運用,故用反證法證明命題時,可以設其否定成立進行推證.命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”的否定是“a,b都不能被5整除”考點:反證法12、A【解析】設點的坐標為,由平面,可得出,利用空間向量數量積為0求得、的值,即可得出點的坐標.【詳解】設點的坐標為,,,,,則,,,平面,即,所以,,解得,所以,點的坐標為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】根據遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:714、16【解析】利用橢圓的定義可知,又△的周長,即可求焦點三角形的周長.【詳解】由橢圓定義知:,所以△的周長為.故答案為:16.15、【解析】,所以抽到穿白色衣服的選手號碼為,共16、①.②.【解析】設,根據可得圓的方程,利用垂徑定理可求.【詳解】設,則,整理得到,即.因為,故為的中點,過圓心作的垂線,垂足為,則為的中點,則,故,解得,故答案為:,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)設出切線方程,聯(lián)立后用韋達定理及根的判別式進行表達出A的橫坐標與縱坐標,進而表達出直線的方程,化簡即為結果;(2)再第一問的基礎上,利用向量的夾角公式表達出夾角的余弦值,進而證明出結論.【小問1詳解】顯然直線的斜率存在,設直線的方程為,聯(lián)立得,則,化簡得.因為方程有兩個相等實根,故切點A的橫坐標,得,則,故,則,即.【小問2詳解】同理可得,又與均過,所以.故,,,又因為,所以,則,,故,故.【點睛】圓錐曲線中證明角度相關的問題,往往需要轉化為斜率或向量進行求解.18、(1)(2)【解析】(1)利用與的關系求數列的通項公式;(2)利用錯位相減法求和即可.【小問1詳解】因為,故當時,,兩式相減得,又由題設可得,從而的通項公式為:;【小問2詳解】因為,,兩式相減得:所以.19、(1),;(2).【解析】(1)利用空間向量的坐標運算可求得的坐標,利用向量的模長公式可求得的值;(2)計算出,結合的取值范圍可求得結果.【詳解】(1),;(2),,因此,.【點睛】本題考查空間向量的坐標運算,同時也考查了利用空間向量的數量積計算向量的夾角,考查計算能力,屬于基礎題.20、(1);(2)【解析】(1)由焦點坐標可求c值,a值,然后可求出b的值.進而求出橢圓C的標準方程(2)先求出直線方程然后與橢圓方程聯(lián)立利用韋達定理及弦長公式求出|AB|的長度【詳解】解:⑴由,長軸長為6得:所以∴橢圓方程為⑵設,由⑴可知橢圓方程為①,∵直線AB的方程為②把②代入①得化簡并整理得所以又【點睛】本題考查橢圓的方程和性質,考查韋達定理及弦長公式的應用,考查運算能力,屬于中檔題21、(1);(2)【解析】(1)由直線一般方程的垂直公式,即得解;(2)由直線一般方程的平行公式,求得,再由平行線的距離公式,即得解.【小問1詳解】∵兩直線垂直,∴,解得【小問2詳解】∵兩直線平行,∴,解得或1,經過驗證時兩條直線重合,舍去.∴可得:直線:,:∴兩直線間的距離22、(1)當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;(2)見詳解【解析】(1)對函數進行求導,然后根據參數進行分類討論;(2)構造函數,求函數的最小值即可證出.【詳解】(1)的定義域為,.當時,在上恒成立,所以在上單調遞增;當時,時,;時,,所以在上單調遞減,在上單調遞增.綜上所述,當時,在上單調遞增;當時,在上單調遞減,在上單調遞增.(2)當時,.令,,則.,令,.恒成立,所以在上單調遞增.因為,,所以存在唯一的,使得,即.①當時,,即,所以在上單調遞減;當時,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論