版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025年湖北省荊州市公安縣數(shù)學高二上期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的頂點在原點,對稱軸是x軸,點在拋物線上,則拋物線的方程為()A. B.C. D.2.已知圓M的圓心在直線上,且點,在M上,則M的方程為()A. B.C. D.3.如圖所示,某空間幾何體的三視圖是3個全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.4.點到直線的距離為A.1 B.2C.3 D.45.如圖,我市某地一拱橋垂直軸截面是拋物線,已知水利人員在某個時刻測得水面寬,則此時刻拱橋的最高點到水面的距離為()A. B.C. D.6.已知命題,則為()A. B.C. D.7.已知數(shù)列滿足:對任意的均有成立,且,,則該數(shù)列的前2022項和()A0 B.1C.3 D.48.已知,若,則()A. B.C. D.9.在等差數(shù)列中,,則的公差為()A.1 B.2C.3 D.410.對于公差為1的等差數(shù)列,;公比為2的等比數(shù)列,,則下列說法不正確的是()A.B.C.數(shù)列為等差數(shù)列D.數(shù)列的前項和為11.在等差數(shù)列中,,表示數(shù)列的前項和,則()A.43 B.44C.45 D.4612.在中,已知角A,B,C所對的邊為a,b,c,,,,則()A. B.C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的右頂點為,為上一點,則的最大值為______.14.在平面幾何中有如下結(jié)論:若正三角形的內(nèi)切圓周長為,外接圓周長為,則.推廣到空間幾何可以得到類似結(jié)論:若正四面體的內(nèi)切球表面積為,外接球表面積為,則__________15.關于曲線C:1,有如下結(jié)論:①曲線C關于原點對稱;②曲線C關于直線x±y=0對稱;③曲線C是封閉圖形,且封閉圖形的面積大于2π;④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點;⑤曲線C與曲線D:|x|+|y|=2有4個公共點,這4點構(gòu)成正方形其中正確結(jié)論的個數(shù)是_____16.直線與圓相交于A,B兩點,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處的切線方程為.(1)求的解析式;(2)求函數(shù)圖象上的點到直線的距離的最小值.18.(12分)在中,其頂點坐標為.(1)求直線的方程;(2)求的面積.19.(12分)已知拋物線的焦點為,直線與拋物線的準線交于點,為坐標原點,(1)求拋物線的方程;(2)直線與拋物線交于,兩點,求的面積20.(12分)已知函數(shù).(1)當時,求的單調(diào)區(qū)間與極值;(2)若在上有解,求實數(shù)a的取值范圍.21.(12分)已知拋物線的焦點為,直線與拋物線交于,兩點,且(1)求拋物線的方程;(2)若,是拋物線上一點,過點的直線與拋物線交于,兩點(均與點不重合),設直線,的斜率分別為,,求證:為定值22.(10分)已知圓,直線的斜率為2,且過點(1)判斷與的位置關系;(2)若圓,求圓與圓的公共弦長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】首先根據(jù)題意設出拋物線的方程,利用點在曲線上的條件為點的坐標滿足曲線的方程,代入求得參數(shù)的值,最后得到答案.【詳解】解:根據(jù)題意設出拋物線的方程,因為點在拋物線上,所以有,解得,所以拋物線的方程是:,故選:B.2、C【解析】由題設寫出的中垂線,求其與的交點即得圓心坐標,再應用兩點距離公式求半徑,即可得圓的方程.【詳解】因為點,在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C3、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A4、B【解析】直接利用點到直線的距離公式得到答案.【詳解】,答案為B【點睛】本題考查了點到直線的距離公式,屬于簡單題.5、D【解析】代入計算即可.【詳解】設B點的坐標為,由拋物線方程得,則此時刻拱橋的最高點到水面的距離為2米.故選:D6、C【解析】將全稱命題否定為特稱命題即可【詳解】由題意,根據(jù)全稱命題與特稱命題的關系,可得命題,則,故選:C.7、A【解析】根據(jù)可知,數(shù)列具有周期性,即可解出【詳解】因為,所以,即,所以數(shù)列中的項具有周期性,,由,,依次對賦值可得,,一個周期內(nèi)項的和為零,而,所以數(shù)列的前2022項和故選:A8、B【解析】先求出的坐標,然后由可得,再根據(jù)向量數(shù)量積的坐標運算求解即可.【詳解】因為,,所以,因為,所以,即,解得.故選:B9、A【解析】根據(jù)等差數(shù)列性質(zhì)可得方程組,求得公差.【詳解】等差數(shù)列中,,,由通項公式可得解得故選:A10、B【解析】由等差數(shù)列的通項公式判定選項A正確;利用等比數(shù)列的通項公式求出,即判定選項B錯誤;利用對數(shù)的運算和等差數(shù)列的定義判定選項C正確;利用錯位相減法求和,即判定選項D正確.【詳解】對于A:由條件可得,,即選項A正確;對于B:由條件可得,,即選項B錯誤;對于C:因為,所以,則,即數(shù)列是首項和公差均為的等差數(shù)列,即選項C正確;對于D:,設數(shù)列的前項和為,則,,上面兩式相減可得,所以,即選項D正確.故選:B.11、C【解析】根據(jù)等差數(shù)列的性質(zhì),求得,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由等差數(shù)列中,滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以,則.故選:C.12、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設出點P的坐標,利用兩點間距離公式建立函數(shù)關系,借助二次函數(shù)計算最值作答.【詳解】橢圓的右頂點為,設點,則,即,且,于是得,因,則當時,,所以的最大值為.故答案為:14、【解析】分析:平面圖形類比空間圖形,二維類比三維得到,類比平面幾何的結(jié)論,確定正四面體的外接球和內(nèi)切球的半徑之比,即可求得結(jié)論.詳解:平面幾何中,圓的周長與圓的半徑成正比,而在空間幾何中,球的表面積與半徑的平方成正比,因為正四面體的外接球和內(nèi)切球的半徑之比是,,故答案為.點睛:本題主要考查類比推理,屬于中檔題.類比推理問題,常見的類型有:(1)等差數(shù)列與等比數(shù)列的類比;(2)平面與空間的類比;(3)橢圓與雙曲線的類比;(4)復數(shù)與實數(shù)的類比;(5)向量與數(shù)的類比.15、4【解析】直接利用曲線的性質(zhì),對稱性的應用可判斷①②;求出可判斷③;聯(lián)立方程,解方程組可判斷④⑤的結(jié)論【詳解】對于①,將方程中的x換為﹣x,y換為﹣y,方程不變,曲線C關于原點對稱,故①正確;對于②,將方程中的x換為﹣y,把y換成﹣x,方程不變,曲線C關于直線x±y=0對稱,故②正確;對于③,由方程得,故曲線C不是封閉圖形,故③錯誤;對于④,曲線C:,不是封閉圖形,聯(lián)立整理可得:,方程無解,故④正確;對于⑤,曲線C與曲線D:由于,解得,根據(jù)對稱性,可得公共點為,故曲線C與曲線D有四個交點,這4點構(gòu)成正方形,故⑤正確故答案為:416、6【解析】利用弦心距、半徑與弦長的幾何關系,結(jié)合點線距離公式即可求弦長.【詳解】由題設,圓心為,則圓心到直線距離為,又圓的半徑為,故.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題可得,然后利用導數(shù)的幾何意義即求;(2)由題可得切點到直線的距離最小,即得.【小問1詳解】∵函數(shù),∴的定義域為,,∴在處切線的斜率為,由切線方程可知切點為,而切點也在函數(shù)圖象上,解得,∴的解析式為;【小問2詳解】由于直線與直線平行,直線與函數(shù)在處相切,所以切點到直線的距離最小,最小值為,故函數(shù)圖象上的點到直線的距離的最小值為.18、(1)(2)【解析】(1)先求出AB的斜率,再利用點斜式寫出方程即可;(2)先求出,再求出C到AB的距離即可得到答案.【小問1詳解】由已知,,所以直線的方程為,即.【小問2詳解】,C到直線AB的距離為,所以的面積為.19、(1)(2)【解析】(1)根據(jù)題意建立關于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達定理整體思想求的長,再求點到直線的距離,進而求面積.【小問1詳解】由題意可得,,則,因為,所以,解得,故拋物線的方程為【小問2詳解】由(1)可知,則點到直線的距離聯(lián)立,整理得設,,則,從而因為直線過拋物線的焦點,所以故的面積為20、(1)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)有極小值,無極大值(2)【解析】(1)利用導數(shù)的正負判斷函數(shù)的單調(diào)性,然后由極值的定義求解即可;(2)分和兩種情況分析求解,當時,不等式變形為在,上有解,構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求解的最小值,即可得到答案【小問1詳解】當時,,所以當時;當時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以當時函數(shù)有極小值,無極大值.【小問2詳解】因為在上有解,所以在上有解,當時,不等式成立,此時,當時在上有解,令,則由(1)知時,即,當時;當時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以當時,,所以,綜上可知,實數(shù)a的取值范圍是.點睛】利用導數(shù)研究不等式恒成立問題或有解問題的策略為:通常構(gòu)造新函數(shù)或參變量分離,利用導數(shù)研究函數(shù)的單調(diào)性,求出最值從而求得參數(shù)的取值范圍21、(1)(2)證明見解析【解析】(1)聯(lián)立直線和拋物線方程,根據(jù)拋物線定義和焦半徑公式得到,根據(jù)韋達定理可得到最終結(jié)果;(2)代入點坐標可得到參數(shù)的值,設直線的方程為,聯(lián)立該直線和拋物線方程,,代入韋達定理可得到最終結(jié)果.【小問1詳解】設點,,點,,聯(lián)立,整理得,,由拋物線的定義知,解得,拋物線的方程為【小問2詳解】,為拋物線上一點,,即,設,,,,直線的方程為,由,消去得,,,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 萬洋冶煉集團招聘題庫及答案
- 風的測量課件
- 小說訓練題目及答案解析
- 風電運維培訓課件
- 文庫發(fā)布:風電課件
- 護理行業(yè)發(fā)展趨勢
- 新鄉(xiāng)古建筑平移施工方案
- 術(shù)后PE的長期抗栓治療策略
- 天頌建設集團招聘題庫及答案
- 天康集團招聘筆試題目及答案
- GA 1814.4-2023鐵路系統(tǒng)反恐怖防范要求第4部分:重點場所
- 地理小博士題庫2023高中及答案
- 生物化學授課 氨基酸代謝
- LY/T 1718-2007輕質(zhì)纖維板
- GB 34660-2017道路車輛電磁兼容性要求和試驗方法
- 大學生旅游調(diào)查報告模板
- 《刑法》完整課件(課件)
- 商標檢索報告(模版)
- 河北省保定市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 鋼箱梁計算分析與案例詳解
- 貴州省普通高中新課程實施方案(試行)
評論
0/150
提交評論