版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
Name:
Class:
Date:
Chapter04-IntroductiontoProbability
CopyrightCengageLearning.PoweredbyCognero.
Page
PAGE
1.
Eachindividualoutcomeofanexperimentiscalled
a.
thesamplespace.
b.
asamplepoint.
c.
atrial.
d.
anevent.
ANSWER:
b
2.
Thecollectionofallpossiblesamplepointsinanexperimentis
a.
thesamplespace.
b.
anevent.
c.
acombination.
d.
thepopulation.
ANSWER:
a
3.
Agraphicalmethodofrepresentingthesamplepointsofanexperimentisa
a.
stackedbarchart.
b.
dotplot.
c.
stem-and-leafdisplay.
d.
treediagram.
ANSWER:
d
4.
Anexperimentconsistsofselectingastudentbodypresidentandvicepresident.Allundergraduatestudents(freshmenthroughseniors)areeligiblefortheseoffices.Howmanysamplepoints(possibleoutcomesastotheclassifications)exist?
a.
4
b.
16
c.
8
d.
32
ANSWER:
b
5.
Anyprocessthatgenerateswell-definedoutcomesisa(n)
a.
event.
b.
experiment.
c.
samplepoint.
d.
samplespace.
ANSWER:
b
6.
Thesamplespacerefersto
a.
anyparticularexperimentaloutcome.
b.
thesamplesizeminusone.
c.
thesetofallpossibleexperimentaloutcomes.
d.
anevent.
ANSWER:
c
7.
Instatisticalexperiments,eachtimetheexperimentisrepeated
a.
thesameoutcomemustoccur.
b.
thesameoutcomecannotoccuragain.
c.
adifferentoutcomemightoccur.
d.
adifferentoutcomemustoccur.
ANSWER:
c
8.
Whentheassumptionofequallylikelyoutcomesisusedtoassignprobabilityvalues,themethodusedtoassignprobabilitiesisreferredtoasthe_____method.
a.
relativefrequency
b.
subjective
c.
probability
d.
classical
ANSWER:
d
9.
ThecountingrulethatisusedforcountingthenumberofexperimentaloutcomeswhennobjectsareselectedfromasetofNobjectswhereorderofselectionisnotimportantiscalledtherulefor
a.
permutations.
b.
combinations.
c.
independentevents.
d.
multiple-stepexperiments.
ANSWER:
b
10.
ThecountingrulethatisusedforcountingthenumberofexperimentaloutcomeswhennobjectsareselectedfromasetofNobjectswhereorderofselectionisimportantiscalledthecountingrulefor
a.
permutations.
b.
combinations.
c.
independentevents.
d.
multiple-steprandomexperiments.
ANSWER:
a
11.
Fromagroupofsixpeople,twoindividualsaretobeselectedatrandom.Howmany
selectionsarepossible?
a.
12
b.
36
c.
15
d.
8
ANSWER:
c
12.
Whentheresultsofexperimentationorhistoricaldataareusedtoassignprobabilityvalues,themethodusedtoassignprobabilitiesisreferredtoasthe_____method.
a.
relativefrequency
b.
subjective
c.
classical
d.
posterior
ANSWER:
a
13.
Amethodofassigningprobabilitiesbaseduponjudgmentisreferredtoasthe_____
method.
a.
relative
b.
probability
c.
classical
d.
subjective
ANSWER:
d
14.
Theintersectionoftwomutuallyexclusiveevents
a.
canbeanyvaluebetween0to1.
b.
mustalwaysbeequalto1.
c.
mustalwaysbeequalto0.
d.
canbeanypositivevalue.
ANSWER:
c
15.
Twoeventsaremutuallyexclusive
a.
iftheirintersectionis1.
b.
iftheyhavenosamplepointsincommon.
c.
iftheirintersectionis0.5.
d.
ifmostoftheirsamplepointsareincommon.
ANSWER:
b
16.
Therangeofprobabilityvaluesis
a.
0toinfinity.
b.
minusinfinitytoplusinfinity.
c.
0to1.
d.
-1to1.
ANSWER:
c
17.
Whichofthefollowingstatementsisalwaystrue?
a.
-1P(Ei)1
b.
P(A)=1-P(Ac)
c.
P(A)+P(B)=1
d.
∑P1
ANSWER:
b
18.
Eventsthathavenosamplepointsincommonare
a.
independentevents.
b.
supplements.
c.
mutuallyexclusiveevents.
d.
complements.
ANSWER:
c
19.
Initialestimatesoftheprobabilitiesofeventsareknownas_____probabilities.
a.
subjective
b.
posterior
c.
conditional
d.
prior
ANSWER:
d
20.
Twoeventswithnonzeroprobabilities
a.
canbebothmutuallyexclusiveandindependent.
b.
cannotbebothmutuallyexclusiveandindependent.
c.
arealwaysmutuallyexclusive.
d.
arealwaysindependent.
ANSWER:
b
21.
Theadditionlawispotentiallyhelpfulwhenweareinterestedincomputingtheprobabilityof
a.
independentevents
b.
theintersectionoftwoevents
c.
theunionoftwoevents
d.
conditionalevents
ANSWER:
c
22.
Thesumoftheprobabilitiesoftwocomplementaryeventsis
a.
0.
b.
0.5.
c.
0.57.
d.
1.0.
ANSWER:
d
23.
Thesetofallpossibleoutcomesofanexperimentis
a.
asamplepoint.
b.
anevent.
c.
thepopulation.
d.
thesamplespace.
ANSWER:
d
24.
Assumingthateachofthe52cardsinanordinarydeckhasaprobabilityof1/52ofbeingdrawn,whatistheprobabilityofdrawingablackcard?
a.
1/52
b.
4/52
c.
13/52
d.
26/52
ANSWER:
b
25.
Ifasixsideddieistossedtwotimesand"3"showsupbothtimes,theprobabilityof"3"onthethirdtrialis
a.
muchlargerthananyotheroutcome.
b.
muchsmallerthananyotheroutcome.
c.
thesameasanyotheroutcome.
d.
notabletobedeterminedbeforethedieistossed.
ANSWER:
c
26.
IfAandBareindependenteventswithP(A)=0.5andP(A
∩
B)=0.12,then,P(B)=
a.
0.240.
b.
0.060.
c.
0.380.
d.
0.620.
ANSWER:
a
27.
IfP(A)=0.4,P(B|A)=0.35,P(A∪B)=0.69,thenP(B)=
a.
0.14.
b.
0.43.
c.
0.75.
d.
0.59.
ANSWER:
b
28.
Ofsixletters(A,B,C,D,E,andF),twolettersaretobeselectedatrandom.Howmanyoutcomesarepossible?
a.
30
b.
11
c.
6!
d.
15
ANSWER:
d
29.
Fourapplicationsforadmissiontoalocaluniversityarechecked,anditisdeterminedwhethereachapplicantismaleorfemale.Thenumberofsamplepointsinthisexperimentis
a.
2.
b.
4.
c.
16.
d.
8.
ANSWER:
c
30.
Assumeyourfavoritesoccerteamhas4gameslefttofinishtheseason.Theoutcomeofeachgamecanbewin,loseortie.Thenumberofpossibleoutcomesis
a.
4.
b.
12.
c.
64.
d.
81.
ANSWER:
d
31.
Eachcustomerenteringadepartmentstorewilleitherbuyornotbuysomemerchandise.Anexperimentconsistsoffollowing5customersanddeterminingwhetherornottheypurchaseanymerchandise.Thenumberofsamplepointsinthisexperimentis
a.
5.
b.
10.
c.
25.
d.
64.
ANSWER:
d
32.
Anexperimentconsistsoftossing4coinssuccessively.Thenumberofsamplepointsinthisexperimentis
a.
16.
b.
8.
c.
4.
d.
2.
ANSWER:
a
33.
Anexperimentconsistsofthreesteps.Therearefivepossibleresultsonthefirststep,twopossibleresultsonthesecondstep,andthreepossibleresultsonthethirdstep.Thetotalnumberofexperimentaloutcomesis
a.
10.
b.
625.
c.
150.
d.
180.
ANSWER:
c
34.
Iftwoeventsareindependent,then
a.
theymustbemutuallyexclusive.
b.
thesumoftheirprobabilitiesmustbeequaltoone.
c.
theirintersectionmustbezero.
d.
theproductoftheirprobabilitiesgivestheirintersection.
ANSWER:
d
35.
Bayes'theoremisusedtocompute
a.
thepriorprobabilities.
b.
theunionofevents.
c.
intersectionofevents.
d.
theposteriorprobabilities.
ANSWER:
d
36.
Thesymbol∩showsthe
a.
unionofevents.
b.
intersectionoftwoevents.
c.
sumoftheprobabilitiesofevents.
d.
samplespace.
ANSWER:
b
37.
Thesymbol∪showsthe
a.
unionofevents.
b.
intersectionoftwoevents.
c.
sumoftheprobabilitiesofevents.
d.
samplespace.
ANSWER:
a
38.
Themultiplicationlawispotentiallyhelpfulwhenweareinterestedincomputingtheprobabilityof
a.
mutuallyexclusiveevents.
b.
theintersectionoftwoevents.
c.
theunionoftwoevents.
d.
conditionalevents.
ANSWER:
b
39.
TheunionofeventsAandBistheeventcontainingallthesamplepointsbelongingto
a.
BorA.
b.
AorB.
c.
AorBorboth.
d.
AorB,butnotboth.
ANSWER:
c
40.
Ifapennyistossedthreetimesandcomesupheadsallthreetimes,theprobabilityofheadsonthefourthtrialis
a.
0.
b.
1/16.
c.
1/2.
d.
largerthantheprobabilityoftails.
ANSWER:
c
41.
Ifacoinistossedthreetimes,thelikelihoodofobtainingthreeheadsinarowis
a.
0.0.
b.
0.500.
c.
0.875.
d.
0.125.
ANSWER:
d
42.
IfAandBareindependenteventswithP(A)=0.5andP(B)=0.5,thenP(A∩B)is
a.
0.00.
b.
1.00.
c.
0.5.
d.
0.25.
ANSWER:
d
43.
IfAandBareindependenteventswithP(A)=0.4andP(B)=0.25,thenP(A∩B)=
a.
0.65.
b.
0.1.
c.
0.625.
d.
0.15.
ANSWER:
b
44.
IfAandBareindependenteventswithP(A)=0.2andP(B)=0.6,thenP(A∪B)=
a.
0.62.
b.
0.12.
c.
0.60.
d.
0.68.
ANSWER:
d
45.
IfAandBareindependenteventswithP(A)=0.05andP(B)=0.65,thenP(A∩B)=
a.
0.05.
b.
0.0325.
c.
0.65.
d.
0.8.
ANSWER:
b
46.
IfAandBaremutuallyexclusiveeventswithP(A)=0.3andP(B)=0.5,thenP(A∩B)=
a.
0.30.
b.
0.15.
c.
0.00.
d.
0.20.
ANSWER:
c
47.
IfAandBaremutuallyexclusiveeventswithP(A)=0.25andP(B)=0.4,thenP(A∪B)=
a.
0.
b.
0.15.
c.
0.1.
d.
0.65.
ANSWER:
d
48.
Alotteryisconductedusingfoururns.Eachurncontainschipsnumberedfrom0to9.Onechipisselectedatrandomfromeachurn.Thetotalnumberofsamplepointsinthesamplespaceis
a.
40.
b.
6,561.
c.
1,048,576.
d.
10,000.
ANSWER:
d
49.
Ofthelast100customersenteringacomputershop,40havepurchasedacomputer.Iftheclassicalmethodforcomputingprobabilityisused,theprobabilitythatthenextcustomerwillpurchaseacomputeris
a.
0.40.
b.
0.50.
c.
1.00.
d.
0.60.
ANSWER:
a
50.
EventsAandBaremutuallyexclusivewithP(C)=0.35andP(B)=0.25.Then,P(Bc)=
a.
0.62.
b.
0.50.
c.
0.75.
d.
0.60.
ANSWER:
c
51.
AnexperimentconsistsoffouroutcomeswithP(E1)=0.2,P(E2)=0.25,andP(E3)=0.05.TheprobabilityofoutcomeE4is
a.
0.500.
b.
0.0025.
c.
0.100.
d.
0.
ANSWER:
c
52.
EventsAandBaremutuallyexclusive.Whichofthefollowingstatementsisalsotrue?
a.
AandBarealsoindependent.
b.
P(A∪B)=P(A)P(B)
c.
P(A∪B)=P(A)+P(B)
d.
P(A∩B)=P(A)+P(B)
ANSWER:
c
53.
Asix-sideddieistossed4times.Theprobabilityofobservingfouronesinarowis
a.
4/6.
b.
1/6.
c.
1/4096.
d.
1/1296.
ANSWER:
d
54.
TheprobabilityoftheoccurrenceofeventAinanexperimentis1/3.Iftheexperimentisperformed2timesandeventAdidnotoccur,thenonthethirdtrialeventA
a.
mustoccur.
b.
mayoccur.
c.
couldnotoccur.
d.
hasa2/3probabilityofoccurring.
ANSWER:
b
55.
Aperfectlybalancedcoinistossed6times,andtailsappearsonallsixtosses.Then,ontheseventhtrial
a.
tailcannotappear.
b.
headhasalargerchanceofappearingthantail.
c.
tailhasabetterchanceofappearingthanhead.
d.
tailhassamechanceof
appearingasthe
head.
ANSWER:
d
56.
Inanexperiment,eventsAandBaremutuallyexclusive.IfP(A)=0.6,thentheprobabilityofB
a.
cannotbelargerthan0.4.
b.
canbeanyvaluegreaterthan0.6.
c.
canbeanyvaluebetween0to1.
d.
cannotbedeterminedwiththeinformationgiven.
ANSWER:
a
57.
Amethodofassigningprobabilitieswhichassumesthattheexperimentaloutcomesareequallylikelyisreferredtoasthe_____method.
a.
objective
b.
classical
c.
subjective
d.
experimental
ANSWER:
b
58.
Amethodofassigningprobabilitiesbasedonhistoricaldataiscalledthe_____method.
a.
classical
b.
subjective
c.
relativefrequency
d.
progressive
ANSWER:
c
59.
IfP(A)=0.58,P(B)=0.44,andP(A∩B)=0.25,thenP(A∪B)=
a.
1.02.
b.
0.77.
c.
0.11.
d.
0.39.
ANSWER:
b
60.
IfP(A)=0.62,P(B)=0.47,andP(A∪B)=0.88,thenP(A∩B)=
a.
0.2914.
b.
1.9700.
c.
0.6700.
d.
0.2100.
ANSWER:
d
61.
IfAandBareindependenteventswithP(A)=0.4andP(B)=0.25,thenP(A∪B)=
a.
0.65.
b.
0.55.
c.
0.10.
d.
0.75.
ANSWER:
b
62.
IfP(A)=0.50,P(B)=0.40andP(A∪B)=0.88,thenP(B|
A)=
a.
0.02.
b.
0.03.
c.
0.04.
d.
0.05.
ANSWER:
c
63.
IfAandBareindependenteventswithP(A)=0.38andP(B)=0.55,thenP(A|B)=
a.
0.209.
b.
0.000.
c.
0.550.
d.
0.380.
ANSWER:
d
64.
IfXandYaremutuallyexclusiveeventswithP(A)=0.295,P(B)=0.32,thenP(A|B)=
a.
0.0944.
b.
0.6150.
c.
1.0000.
d.
0.0000.
ANSWER:
d
65.
IfAandBareindependenteventswithP(A)=0.35andP(B)=0.20,then,P(A∪B)=
a.
0.07.
b.
0.62.
c.
0.55.
d.
0.48.
ANSWER:
d
66.
IfP(A)=0.7,P(B)=0.6,P(A∩B)=0,theneventsAandBare
a.
supplementaryevents.
b.
mutuallyexclusive.
c.
independentevents.
d.
complementsofeachother.
ANSWER:
b
67.
IfP(A)=0.45,P(B)=0.55,andP(A∪B)=0.78,thenP(A|B)=
a.
0.00
b.
0.45
c.
0.22
d.
0.40
ANSWER:
d
68.
IfP(A)=0.48,P(A∪B)=0.82,andP(B)=0.54,thenP(A∩B)=
a.
0.3936.
b.
0.3400.
c.
0.2000.
d.
1.0200.
ANSWER:
c
69.
SomeoftheCDsproducedbyamanufactureraredefective.Fromtheproductionline,4CDsareselectedandinspected.Howmanysamplepointsexistinthisexperiment?
a.
4
b.
8
c.
16
d.
256
ANSWER:
c
70.
Sixpuppieswereborninalitter,anditisdeterminedwhethereachpuppyismaleorfemale.Howmanysamplepointsexistintheaboveexperiment?
a.
64
b.
32
c.
16
d.
4
ANSWER:
a
71.
Assumeyourfavoritesoccerteamhas3gameslefttofinishtheseason.Theoutcomeofeachgamecanbewin,lose,ortie.Howmanypossibleoutcomesexist?
a.
7
b.
27
c.
36
d.
64
ANSWER:
b
72.
Eachcustomerenteringadepartmentstorewilleitherbuyornotbuysomemerchandise.Anexperimentconsistsoffollowing3customersanddeterminingwhetherornottheypurchaseanymerchandise.Howmanysamplepointsexistintheaboveexperiment?(Notethateachcustomeriseitherapurchaserornon-purchaser.)
a.
3
b.
6
c.
8
d.
9
ANSWER:
d
73.
Fromninecardsnumbered1through9,twocardsaredrawn.Considertheselectionandclassificationofthecardsasoddorevenasanexperiment.Howmanysamplepointsarethereforthisexperiment?
a.
2
b.
3
c.
4
d.
9
ANSWER:
c
74.
Acollegeplanstointerview7studentsforpossibleofferofgraduateassistantships.Thecollegehasthreeassistantshipsavailable.Howmanygroupsofthreecanthecollegeselect?
ANSWER:
35
75.
Astudenthastotake12morecoursesbeforehecangraduate.Ifnoneofthecoursesareprerequisitetoothers,howmanygroupsoffourcoursescanheselectforthenextsemester?
ANSWER:
495
76.
Fromamong8studentshowmanycommitteesconsistingof4studentscanbeselected?
ANSWER:
70
77.
Fromagroupoftenfinaliststoacontest,threeindividualsaretobeselectedforthefirstandsecondandthirdplaces.Determinethenumberofpossibleselections.
ANSWER:
720
78.
Twelveindividualsarecandidatesforpositionsofpresidentandvicepresidentofanorganization.Howmanypossibilitiesofselectionsexist?
ANSWER:
132
79.
AssumeyouhaveappliedfortwojobsAandB.TheprobabilitythatyougetanofferforjobAis0.23.TheprobabilityofbeingofferedjobBis0.19.Theprobabilityofgettingatleastoneofthejobsis0.38.
a.
Whatistheprobabilitythatyouwillbeofferedbothjobs?
b.
AreeventsAandBmutuallyexclusive?Whyorwhynot?Explain.
ANSWER:
a.
0.04
b.
No,becauseP(A∩B)≠0
80.
Assumeyouhaveappliedfortwoscholarships,aMeritscholarship(M)andanAthleticscholarship(A).TheprobabilitythatyoureceiveanAthleticscholarshipis0.18.Theprobabilityofreceivingbothscholarshipsis0.11.Theprobabilityofgettingatleastoneofthescholarshipsis0.3.
a.
WhatistheprobabilitythatyouwillreceiveaMeritscholarship?
b.
AreeventsAandMmutuallyexclusive?Whyorwhynot?Explain.
c.
ArethetwoeventsAandMindependent?Explainusingprobabilities.
d.
WhatistheprobabilityofreceivingtheAthleticscholarshipgiventhatyouhavebeenawardedtheMeritscholarship?
e.
WhatistheprobabilityofreceivingtheMeritscholarshipgiventhatyouhavebeenawardedtheAthleticscholarship?
ANSWER:
?
a.
0.23
b.
No,becauseP(A∩M)≠0
c.
No,becauseP(A∩M)≠P(A)P(M)
d.
0.4783
e.
0.6111
81.
Asurveyofasampleofbusinessstudentsresultedinthefollowinginformationregardingthegendersoftheindividualsandtheirselectedmajor.
SelectedMajor
Gender
Management
Marketing
Others
Total
Male
50
20
30
100
Female
30
20
50
100
Total
80
40
80
200
?
a.
WhatistheprobabilityofselectinganindividualwhoismajoringinMarketing?
b.
WhatistheprobabilityofselectinganindividualwhoismajoringinManagement,giventhatthepersonisfemale?
c.
Giventhatapersonismale,whatistheprobabilitythatheismajoringinManagement?
d.
Whatistheprobabilityofselectingamaleindividual?
ANSWER:
?
a.
0.2
b.
0.3
c.
0.5
d.
0.5
82.
SixtypercentofthestudentbodyatUTCisfromthestateofTennessee(T),30%percentarefromotherstates(O),andtheremainderareinternationalstudents(I).TwentypercentofstudentsfromTennesseeliveinthedormitories,whereas,50%ofstudentsfromotherstatesliveinthedormitories.Finally,80%oftheinternationalstudentsliveinthedormitories.
a.
WhatpercentageofUTCstudentsliveinthedormitories?
b.
Giventhatastudentlivesinthedormitory,whatistheprobabilitythatshe/heisaninternationalstudent?
c.
Giventhatastudentlivesinthedormitory,whatistheprobabilitythatshe/heisfromTennessee?
ANSWER:
a.
35%
b.
0.2286(rounded)
c.
0.3429(rounded)
83.
Theprobabilityofaneconomicdeclineintheyear2008is0.23.Thereisaprobabilityof0.64thatwewillelectarepublicanpresidentintheyear2008.Ifweelectarepublicanpresident,thereisa0.35probabilityofaneconomicdecline.LetD
representtheeventofaneconomicdecline,andR
representtheeventofelectionofaRepublicanpresident.
a.
AreR
andDindependentevents?
b.
WhatistheprobabilityofaRepublicanpresidentandeconomicdeclineintheyear2008?
c.
Ifweexperienceaneconomicdeclineintheyear2008,whatistheprobabilitythattherewillaRepublicanpresident?
d.
WhatistheprobabilityofeconomicdeclineoraRepublicanpresidentintheyear2008?Hint:YouwanttofindP(D∪R).
ANSWER:
?
a.
No,becauseP(D)≠P(D?R)
b.
0.224
c.
0.9739
d.
0.646
84.
AsacompanymanagerforClaimstatCorporationthereisa0.40probabilitythatyouwillbepromotedthisyear.Thereisa0.72probabilitythatyouwillgetapromotion,araise,orboth.Theprobabilityofgettingapromotionandaraiseis0.25.
a.
Ifyougetapromotion,whatistheprobabilitythatyouwillalsogetaraise?
b.
Whatistheprobabilitythatyouwillgetaraise?
c.
Aregettingaraiseandbeingpromotedindependentevents?Explainusingprobabilities.
d.
Arethesetwoeventsmutuallyexclusive?Explainusingprobabilities.
ANSWER:
?
a.
0.625
b.
0.57
c.
No,becauseP(R)≠P(R?P)
d.
No,becauseP(R∩P)≠0
85.
Acompanyplanstointerview10recentgraduatesforpossibleemployment.Thecompanyhasthreepositionsopen.Howmanygroupsofthreecanthecompanyselect?
ANSWER:
120
86.
Astudenthastotake7morecoursesbeforeshecangraduate.Ifnoneofthecoursesareprerequisitestoothers,howmanygroupsofthreecoursescansheselectforthenextsemester?
ANSWER:
35
87.
Howmanycommittees,consistingof3femaleand3malestudents,canbeselectedfromagroupof7femaleand8malestudents?
ANSWER:
1960
88.
Eightvitaminandsixsugartabletsidenticalinappearanceareinabox.OnetabletistakenatrandomandgiventoPersonA.AtabletisthenselectedandgiventoPersonB.Whatistheprobabilitythat
a.
PersonAwasgivenavitamintablet?
b.
PersonBwasgivenasugartabletgiventhatPersonAwasgivenavitamintablet?
c.
neitherwasgivenvitamintablets?
d.
bothweregivenvitamintablets?
e.
PersonAwasgivenasugartabletandPersonBwasgivenavitamintablet?
f.
PersonAwasgivenavitamintabletandPersonBwasgivenasugartablet?
ANSWER:
?
a.
8/14
b.
6/13
c.
15/91
d.
4/13
e.
24/91
f.
24/91
89.
Thesalesrecordsofarealestateagencyshowthefollowingsalesoverthepast200days:
Numberof
Number
HousesSold
ofDays
0
60
1
80
2
40
3
16
4
4
?
a.
Howmanysamplepointsarethere?
b.
Assignprobabilitiestothesamplepointsandshowtheirvalues.
c.
Whatistheprobabilitythattheagencywillnotsellanyhousesinagivenday?
d.
Whatistheprobabilityofsellingatleast2houses?
e.
Whatistheprobabilityofselling1or2houses?
f.
Whatistheprobabilityofsellinglessthan3houses?
ANSWER:
a.
5
b.
Numberof
HousesSold
Probability
0
0.30
1
0.40
2
0.20
3
0.08
4
0.02
c.
0.3
d.
0.3
e.
0.6
f.
0.9
90.
Abankhasthefollowingdataonthegenderandmaritalstatusof200customers.
Male
Female
Single
20
30
Married
100
50
?
a.
Whatistheprobabilityoffindingasinglefemalecustomer?
b.
Whatistheprobabilityoffindingamarriedmalecustomer?
c.
Ifacustomerisfemale,whatistheprobabilitythatsheissingle?
d.
Whatpercentageofcustomersismale?
e.
Ifacustomerismale,whatistheprobabilitythatheismarried?
f.
Aregenderandmaritalstatusmutuallyexclusive?
g.
Ismaritalstatusindependentofgender?Explainusingprobabilities.
ANSWER:
?
a.
0.15
b.
0.5
c.
0.375
d.
60%
e.
0.833
f.
No,theintersectionisnotzero.
g.
TheyarenotindependentbecauseP(male)=0.6
P(male?single)=0.4
91.
AnapplicanthasappliedforpositionsatCompanyAandCompanyB.TheprobabilityofgettinganofferfromCompanyAis0.4,andtheprobabilityofgettinganofferfromCompanyBis0.3.Assumingthatthetwojoboffersareindependentofeachother,whatistheprobabilitythat
a.
theapplicantgetsanofferfrombothcompanies?
b.
theapplicantwillgetatleastoneoffer?
c.
theapplicantwillnotbegivenanofferfromeithercompany?
d.
CompanyAdoesnotofferherajob,butCompanyBdoes?
ANSWER:
a.
0.12
b.
0.58
c.
0.42
d.
0.18
92.
Anexperimentconsistsofthrowingtwosix-sideddiceandobservingthenumberofspotsontheupperfaces.Determinetheprobabilitythat
a.
thesumofthespotsis3.
b.
eachdieshowsfourormorespots.
c.
thesumofthespotsisnot3.
d.
neitheraonenorasixappearoneachdie.
e.
apairofsixesappear.
f.
thesumofthespotsis7.
ANSWER:
a.
2/36
b.
9/36
c.
34/36
d.
16/36
e.
1/36
f.
6/36
93.
Threeofthecylindersinaneight-cylindercararedefectiveandneedtobereplaced.Iftwocylindersareselectedatrandom,whatistheprobabilitythat
a.
twodefectivecylindersareselected?
b.
nodefectivecylinderisselected?
c.
atleastonedefectivecylinderisselected?
ANSWER:
?
a.
3/32
b.
5/16
c.
11/56
94.
AssumetwoeventsAandBaremutuallyexclusiveand,furthermore,P(A)=0.5andP(B)=0.25.
a.
FindP(A∩B).
b.
FindP(A∪B).
ANSWER:
?
a.
0
b.
0.75
95.
Fortypercentofthestudentswhoenrollinastatisticscoursegotothestatisticslaboratoryonaregularbasis.Pastdataindicatesthat65%ofthosestudentswhousethelabonaregularbasismakeagradeofAinthecourse.Ontheotherhand,only15%ofstudentswhodonotgotothelabonaregularbasismakeagradeofA.IfaparticularstudentmadeanA,determinetheprobabilitythatsheorheusedthelabonaregularbasis.
ANSWER:
0.743
96.
Agovernmentagencyhas6,000employees.Theemployeeswereaskedwhethertheypreferredafour-dayworkweek(10hoursperday),afive-dayworkweek(8hoursperday),orflexiblehours.Youaregiveninformationontheemployees'responsesbrokendownbysex.
Male
Female
Total
Fourdays
300
600
900
Fivedays
1,200
1,500
2,700
Flexible
300
2,100
2,400
Total
1,800
4,200
6,000
?
a.
Whatistheprobabilitythatarandomlyselectedemployeeisamanandisinfavorofafour-dayworkweek?
b.
Whatistheprobabilitythatarandomlyselectedemployeeisfemale?
c.
Arandomlyselectedemployeeturnsouttobefemale.Computetheprobabilitythatsheisinfavorofflexiblehours.
d.
Whatpercentageofemployeesisinfavorofafive-dayworkweek?
e.
Giventhatapersonisinfavorofflexibletime,whatistheprobabilitythatthepersonisfemale?
f.
Whatpercentageofemployeesismaleandinfavorofafive-dayworkweek?
ANSWER:
a.
0.05
b.
0.7
c.
0.5
d.
45%
e.
0.875
f.
20%
97.
Acorporationhas15,000employees.Sixty-twopercentoftheemployeesaremale.Twenty-threepercentoftheemployeesearnmorethan$30,000ayear.Eighteenpercentoftheemployeesaremaleandearnmorethan$30,000ayear.
a.
Ifanemployeeistakenatrandom,whatistheprobabilitythattheemployeeismale?
b.
Ifanemployeeistakenatrandom,whatistheprobabilitythattheemployeeearnsmorethan$30,000ayear?
c.
Ifanemployeeistakenatrandom,whatistheprobabilitythattheemployeeismaleandearnsmorethan$30,000ayear?
d.
Ifanemployeeistakenatrandom,whatistheprobabilitythattheemployeeismaleorearnsmorethan$30,000ayear?
e.
Theemployeetakenatrandomturnsouttobemale.Computetheprobabilitythatheearnsmorethan$30,000ayear.
f.
Arebeingmaleandearningmorethan$30,000ayearindependent?
ANSWER:
a.
0.62
b.
0.23
c.
0.18
d.
0.67
e.
0.2903
f.
No
98.
Inthetwoupcomingbasketballgames,theprobabilitythatUTCwilldefeatMarshallis0.63,andtheprobabilitythatUTCwilldefeatFurmanis0.55.Theproba
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年上海市事業(yè)單位公開招聘考試備考題庫及答案解析
- 2026年度安徽國際商務(wù)職業(yè)學(xué)院省直事業(yè)單位公開招聘工作人員19名筆試模擬試題及答案解析
- 2025年事業(yè)單位外科考試真題及答案
- 2025年淄博網(wǎng)商集團招聘筆試及答案
- 2025年廊坊安次區(qū)教師招聘筆試及答案
- 2025年張家港事業(yè)編考試題及答案
- 2026年水文評價中的模型仿真應(yīng)用
- 2026年探索潛在地質(zhì)風(fēng)險的調(diào)查技術(shù)
- 2025年外企銷售筆試題目和答案
- 2025年醫(yī)考成績查詢顯示筆試及答案
- 第四屆全國儀器儀表行業(yè)職業(yè)技能競賽-無人機裝調(diào)檢修工(儀器儀表檢測)理論考試題庫(含答案)
- 國家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 4-10-01-05 養(yǎng)老護理員 人社廳發(fā)201992號
- GB/T 5169.13-2024電工電子產(chǎn)品著火危險試驗第13部分:灼熱絲/熱絲基本試驗方法材料的灼熱絲起燃溫度(GWIT)試驗方法
- 中國驢肉行業(yè)競爭格局及發(fā)展前景預(yù)測研究報告(2024-2030)
- 財務(wù)負(fù)責(zé)人信息表
- crtd植入術(shù)護理查房
- 徐州市2023-2024學(xué)年八年級上學(xué)期期末英語試卷(含答案解析)
- 孤獨癥兒童康復(fù)課件
- 2022通達(dá)經(jīng)營性物業(yè)貸調(diào)查報告
- 立式氣液分離器計算
- 財務(wù)每日工作匯報表格
評論
0/150
提交評論