廣東省梅州市2025-2026學年數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第1頁
廣東省梅州市2025-2026學年數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第2頁
廣東省梅州市2025-2026學年數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第3頁
廣東省梅州市2025-2026學年數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第4頁
廣東省梅州市2025-2026學年數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省梅州市2025-2026學年數(shù)學高二上期末學業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線在軸上的截距為,在軸上的截距為,則有()A., B.,C., D.,2.已知A為拋物線C:y2=2px(p>0)上一點,點A到C的焦點的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.93.拋物線的焦點坐標是A. B.C. D.4.設(shè)數(shù)列的前項和為,當時,,,成等差數(shù)列,若,且,則的最大值為()A. B.C. D.5.某中學舉行黨史學習教育知識競賽,甲隊有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時現(xiàn)場從中隨機抽出名選手答題,則至少有名女同學被選中的概率是()A. B.C. D.6.命題的否定是()A. B.C. D.7.拋物線的焦點到直線的距離()A. B.C.1 D.28.已知橢圓:的左、右焦點分別為,,下頂點為,直線與橢圓的另一個交點為,若為等腰三角形,則橢圓的離心率為()A. B.C. D.9.設(shè)是函數(shù)的導函數(shù),的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.10.已知橢圓的一個焦點坐標是,則()A.5 B.2C.1 D.11.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.在平面上給定相異兩點,設(shè)點在同一平面上且滿足,當且時,點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“直線和直線垂直”的充要條件是______14.拋物線的焦點到準線的距離等于__________.15.已知等差數(shù)列的前項和為,若,,則數(shù)列的前2021項和為___________.16.若圓C:與圓D2的公共弦長為,則圓D的半徑為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線上一點到其焦點F的距離為2.(1)求拋物線方程;(2)直線與拋物線相交于兩點,求的長.18.(12分)在如圖三角形數(shù)陣中第n行有n個數(shù),表示第i行第j個數(shù),例如,表示第4行第3個數(shù).該數(shù)陣中每一行的第一個數(shù)從上到下構(gòu)成以m為公差的等差數(shù)列,從第三行起每一行的數(shù)從左到右構(gòu)成以m為公比的等比數(shù)列(其中).已知.(1)求m及;(2)記,求.19.(12分)已知橢圓的離心率為,直線與橢圓C相切于點(1)求橢圓C的方程;(2)已知直線與橢圓C交于不同的兩點M,N,與直線交于點Q(P,Q,M,N均不重合),記的斜率分別為,若.證明:為定值20.(12分)已知數(shù)列中,,___________,其中.(1)求數(shù)列的通項公式;(2)設(shè),求證:數(shù)列是等比數(shù)列;(3)求數(shù)列的前n項和.從①前n項和,②,③且,這三個條件中任選一個,補充在上面的問題中并作答.21.(12分)已知直線l的斜率為-2,且與兩坐標軸的正半軸圍成三角形的面積等于1.圓C的圓心在第四象限,直線l經(jīng)過圓心,圓C被x軸截得的弦長為4.若直線x-2y-1=0與圓C相切,求圓C的方程22.(10分)已知橢圓的離心率為,以橢圓兩個焦點與短軸的一個端點為頂點構(gòu)成的三角形的面積為(1)求橢圓C的標準方程;(2)過點作直線l與橢圓C相切于點Q,且直線l斜率大于0,過線段PQ的中點R作直線交橢圓于A,B兩點(點A,B不在y軸上),連結(jié)PA,PB,分別與橢圓交于點M,N,試判斷直線MN的斜率是否為定值;若是,請求出該定值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】將直線方程的一般形式化為截距式,由此可得其在x軸和y軸上的截距.【詳解】直線方程化成截距式為,所以,故選:B.2、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設(shè)拋物線的焦點為F,由拋物線的定義知,即,解得.故選:C.【點晴】本題主要考查利用拋物線的定義計算焦半徑,考查學生轉(zhuǎn)化與化歸思想,是一道容易題.3、D【解析】根據(jù)拋物線的焦點坐標為可知,拋物線即的焦點坐標為,故選D.考點:拋物線的標準方程及其幾何性質(zhì).4、A【解析】根據(jù)等差中項寫出式子,由遞推式及求和公式寫出和,進而得出結(jié)果.【詳解】解:由,,成等差數(shù)列,可得,則,,,可得數(shù)列中,每隔兩項求和是首項為,公差為的等差數(shù)列.則,,則的最大值可能為.由,,可得.因為,,,即,所以,則,當且僅當時,,符合題意,故的最大值為.故選:A.【點睛】本題考查等差數(shù)列的性質(zhì)和遞推式的應用,考查分析問題能力,屬于難題.5、D【解析】現(xiàn)場選名選手,共種情況,設(shè),,,四位同學為男同學則沒有女同學被選中的情況,共有6種,利用對立事件進行求解,即可得到答案;【詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學為男同學則沒有女同學被選中的情況是:,,,,,共種,則至少有一名女同學被選中的概率為.故選:.6、C【解析】根據(jù)含全稱量詞命題的否定可寫出結(jié)果.【詳解】全稱命題的否定是特稱命題,所以命題的否定是.故選:C7、B【解析】由拋物線可得焦點坐標,結(jié)合點到直線的距離公式,即可求解.【詳解】由拋物線可得焦點坐標為,根據(jù)點到直線的距離公式,可得,即拋物線的焦點到直線的距離為.故選:B.8、B【解析】由橢圓定義可得各邊長,利用三角形相似,可得點坐標,再根據(jù)點在橢圓上,可得離心率.【詳解】如圖所示:因為為等腰三角形,且,又,所以,所以,過點作軸,垂足為,則,由,,得,因為點在橢圓上,所以,所以,即離心率,故選:B.9、C【解析】利用導函數(shù)的圖象,判斷導函數(shù)的符號,得到函數(shù)的單調(diào)性以及函數(shù)的極值點,然后判斷選項即可【詳解】解:由題意可知:和時,,函數(shù)是增函數(shù),時,,函數(shù)是減函數(shù);是函數(shù)的極大值點,是函數(shù)的極小值點;所以函數(shù)的圖象只能是故選:C10、C【解析】根據(jù)題意橢圓焦點在軸上,且,將橢圓方程化為標準形式,從而得出,得出答案.【詳解】由焦點坐標是,則橢圓焦點在軸上,且將橢圓化為,則由,焦點坐標是,則,解得故選:C11、B【解析】根據(jù)充分條件和必要條件的概念即可判斷.【詳解】∵,∴“”是“”的必要不充分條件.故選:B.12、C【解析】先求動點的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設(shè),,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當位于圓的最高點時的面積最大,所以,解得;當位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】利用直線一般式方程表示垂直的方法求解.【詳解】因為直線和直線垂直,所以,解得或;故答案為:或.14、【解析】先將拋物線方程,轉(zhuǎn)化為標準方程,求得焦點坐標,準線方程即可.【詳解】因為拋物線方程是,轉(zhuǎn)化為標準方程得:,所以拋物線開口方向向右,焦點坐標準線方程為:,所以焦點到準線的距離等于.故答案為:【點睛】本題主要考查拋物線的標準方程,還考查了理解辨析的能力,屬于基礎(chǔ)題.15、【解析】根據(jù)題意求出,代入中,再利用裂項相消即可求出答案.【詳解】由是等差數(shù)列且,可知:,故.,數(shù)列的前2021項和為.故答案為:.16、【解析】首先根據(jù)圓與圓的位置關(guān)系得到公共弦方程,再根據(jù)弦長求解即可.【詳解】根據(jù)得公共弦方程為:.因為公共弦長為,所以直線過圓的圓心.所以,解得.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)拋物線焦半徑公式即可得解;(2)聯(lián)立方程組求出交點坐標,即可得到弦長.【小問1詳解】由題:拋物線上一點到其焦點F的距離為2,即,所以拋物線方程:【小問2詳解】聯(lián)立直線和得,解得,,18、(1),;(2)【解析】(1)根據(jù)題意以m表示出,由即可求出,進而求出;(2)根據(jù)等差數(shù)列和等比數(shù)列的通項公式求出,再利用錯位相減法即可求出.【詳解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,當時,,又,,滿足,,,兩式相減得,.【點睛】方法點睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯位相減法求和;(3)對于結(jié)構(gòu),利用分組求和法;(4)對于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項相消法求和.19、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓離心率和橢圓經(jīng)過的點建立方程組,求解方程組可得橢圓的方程;(2)先根據(jù)相切求出直線的斜率,結(jié)合可得,再逐個求解,,然后可證結(jié)論.【小問1詳解】解:由題意,解得故橢圓C的方程為.【小問2詳解】證明:設(shè)直線的方程為,聯(lián)立得,因為直線與橢圓C相切,所以判別式,即,整理得,所以,故直線的方程為,因為,所以,設(shè)直線的方程為,聯(lián)立方程組解得故點Q坐標為,聯(lián)立方程組,化簡得設(shè)點因為判別式,得又,所以故,于是為定值.【點睛】直線與橢圓的相切問題一般是聯(lián)立方程,結(jié)合判別式為零求解;定值問題的求解一般結(jié)合目標式中的項,逐個求解,代入驗證即可.20、(1)(2)見解析(3)【解析】(1)選①,根據(jù)與的關(guān)系即可得出答案;選②,根據(jù)與的關(guān)系結(jié)合等差數(shù)列的定義即可得出答案;選③,利用等差中項法可得數(shù)列是等差數(shù)列,再求出公差,即可得解;(2)求出數(shù)列的通項公式,再根據(jù)等比數(shù)列的定義即可得證;(3)求出數(shù)列的通項公式,再利用錯位相減法即可得出答案.【小問1詳解】解:選①,當時,,當時,也成立,所以;選②,因為,所以,所以數(shù)列是以為公差的等差數(shù)列,所以;選③且,因為,所以數(shù)列是等差數(shù)列,公差,所以;【小問2詳解】解:由(1)得,則,所以數(shù)列是以為首項,為公比的等比數(shù)列;【小問3詳解】解:,,①,②由①②得,所以.21、【解析】先根據(jù)題意設(shè)直線方程,由條件求出直線的方程,再根據(jù)條件列出等量關(guān)系,求出圓心和半徑,進而求得答案.【詳解】解:設(shè)直線l的方程為y=-2x+b(b>0),它與兩坐標軸的正半軸的交點依次為,,因為直線l與兩坐標軸的正半軸所圍成的三角形的面積等于1,所以,解得b=2,所以直線l的方程是,即由題意,可設(shè)圓C的圓心為,半徑為r,又因為圓C被x軸截得的弦長等于4,所以①,由于直線與圓相切,所以圓心C到直線的距離②,所以①②聯(lián)立得:,解得:或,又圓心在第四象限,所以,則圓心,,所以圓C方程是.22、(1)(2)是,【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論