版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆遼寧省阜新市海州高級中學高二數(shù)學第一學期期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是等比數(shù)列,,數(shù)列是等差數(shù)列,,則的值是()A. B.C. D.2.已知等差數(shù)列前項和為,若,則的公差為()A.4 B.3C.2 D.13.在等比數(shù)列中,若是函數(shù)的極值點,則的值是()A. B.C. D.4.執(zhí)行下圖所示的程序框圖,則輸出的值為()A.5 B.6C.7 D.85.設為等差數(shù)列的前項和,,,則A.-6 B.-4C.-2 D.26.有一個圓錐形鉛垂,其底面直徑為10cm,母線長為15cm.P是鉛垂底面圓周上一點,則關于下列命題:①鉛垂的側面積為150cm2;②一只螞蟻從P點出發(fā)沿鉛垂側面爬行一周、最終又回到P點的最短路徑的長度為cm.其中正確的判斷是()A.①②都正確 B.①正確、②錯誤C.①錯誤、②正確7.已知空間向量,,則()A. B.19C.17 D.8.已知,為橢圓上關于短軸對稱的兩點,、分別為橢圓的上、下頂點,設,、分別為直線,的斜率,則的最小值為()A. B.C. D.9.劉老師在課堂中與學生探究某個圓時,有四位同學分別給出了一個結論.甲:該圓經(jīng)過點.乙:該圓半徑為.丙:該圓的圓心為.?。涸搱A經(jīng)過點,如果只有一位同學的結論是錯誤的,那么這位同學是()A.甲 B.乙C.丙 D.丁10.已知點,點關于原點對稱點為,則()A. B.C. D.11.如圖,已知,分別是橢圓的左、右焦點,現(xiàn)以為圓心作一個圓恰好經(jīng)過橢圓的中心并且交橢圓于點,.若過點的直線是圓的切線,則橢圓的離心率為()A. B.C. D.12.從裝有2個紅球和2個白球的袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()A.取出的球至少有1個紅球;取出的球都是紅球B.取出的球恰有1個紅球;取出的球恰有1個白球C.取出的球至少有1個紅球;取出的球都是白球D.取出的球恰有1個白球;取出的球恰有2個白球二、填空題:本題共4小題,每小題5分,共20分。13.如圖將自然數(shù),…按到箭頭所指方向排列,并依次在,…等處的位置拐彎.如圖作為第一次拐彎,則第33次拐彎的數(shù)是___________,超過2021的第一個拐彎數(shù)是____________14.在1和9之間插入三個數(shù),使這五個數(shù)成等比數(shù)列,則中間三個數(shù)的積等于________.15.一條光線從點射出,經(jīng)x軸反射,其反射光線所在直線與圓相切,則反射光線所在的直線方程為____.16.已知拋物線C:y2=2px(p>0)上的點P(1,y0)(y0>0)到焦點的距離為2,則p=__三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某種機械設備隨著使用年限的增加,它的使用功能逐漸減退,使用價值逐年減少,通常把它使用價值逐年減少的“量”換算成費用,稱之為“失效費”.某種機械設備的使用年限(單位:年)與失效費(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與關系.請用相關系數(shù)加以說明;(精確到0.01)(2)求出關于的線性回歸方程,并估算該種機械設備使用8年的失效費參考公式:相關系數(shù)線性回歸方程中斜率和截距最小二乘估計計算公式:,參考數(shù)據(jù):,,18.(12分)已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為(1)求橢圓的方程;(2)設直線與橢圓相交于不同的兩點,已知點的坐標為,若,求直線的方程19.(12分)在二項式的展開式中;(1)若,求常數(shù)項;(2)若第4項的系數(shù)與第7項的系數(shù)比為,求:①二項展開式中的各項的二項式系數(shù)之和;②二項展開式中各項的系數(shù)之和20.(12分)如圖,已知正四棱錐中,O為底面對角線的交點.(1)求證:平面;(2)求證:平面.21.(12分)已知集合,.(1)當a=3時,求.(2)若“”是“x∈A”的充分不必要條件,求實數(shù)a的取值范圍.22.(10分)已知圓,直線.(1)當為何值時,直線與圓相切;(2)當直線與圓相交于、兩點,且時,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)等差數(shù)列和等比數(shù)列下標和的性質(zhì)即可求解.【詳解】為等比數(shù)列,,,,;為等差數(shù)列,,,,,∴.故選:B.2、A【解析】由已知,結合等差數(shù)列前n項和公式、通項公式列方程組求公差即可.詳解】由題設,,解得.故選:A3、B【解析】根據(jù)導數(shù)的性質(zhì)求出函數(shù)的極值點,再根據(jù)等比數(shù)列的性質(zhì)進行求解即可.【詳解】,當時,單調(diào)遞增,當時,單調(diào)遞減,當時,單調(diào)遞增,所以是函數(shù)的極值點,因為,且所以,故選:B4、C【解析】直接按照程序框圖運行即可得正確答案.【詳解】當時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,成立,輸出的值為,故選:C.5、A【解析】由已知得解得故選A考點:等差數(shù)列的通項公式和前項和公式6、C【解析】根據(jù)圓錐的側面展開圖為扇形,由扇形的面積公式計算即可判斷①,在展開圖中可知沿著爬行即為最短路徑,計算即可判斷②.【詳解】直徑為10cm,母線長為15cm.底面圓周長為.將其側面展開后得到扇形半徑為cm,弧長為,則扇形面積為,①錯誤.將其側面展開,則爬行最短距離為,由弧長公式得展開后扇形弧度數(shù)為,作,,又,,cm,②正確.故選:C7、D【解析】先求出的坐標,再求出其模【詳解】因為,,所以,故,故選:D.8、A【解析】設出點,的坐標,并表示出兩個斜率、,把代數(shù)式轉化成與點的坐標相關的代數(shù)式,再與橢圓有公共點解決即可.【詳解】橢圓中:,設則,則,,令,則它對應直線由整理得由判別式解得即,則的最小值為故選:A9、D【解析】分別假設甲、乙、丙、丁是錯誤的,看能否推出矛盾,進而推導出答案.【詳解】假設甲的結論錯誤,根據(jù)丙和丁的結論,該圓的半徑為6,與乙的結論矛盾;假設乙的結論錯誤,圓心到點的距離與圓心到點的距離不相等,不成立;假設丙的結論錯誤﹐點到點的距離大于,不成立;假設丁的結論錯誤,圓心到點的距離等于,成立.故選:D10、C【解析】根據(jù)空間兩點間距離公式,結合對稱性進行求解即可.【詳解】因為點關于原點的對稱點為,所以,因此,故選:C11、A【解析】由切線的性質(zhì),可得,,再結合橢圓定義,即得解【詳解】因為過點的直線圓的切線,,,所以由橢圓定義可得,可得橢圓的離心率故選:A12、D【解析】利用互斥事件、對立事件的定義逐一判斷即可.【詳解】A答案中的兩個事件可以同時發(fā)生,不是互斥事件B答案中的兩個事件可以同時發(fā)生,不是互斥事件C答案中的兩個事件不能同時發(fā)生,但必有一個發(fā)生,既是互斥事件又是對立事件D答案中的兩個事件不能同時發(fā)生,也可以都不發(fā)生,故是互斥而不對立事件故選:D【點睛】本題考查的是互斥事件和對立事件的概念,較簡單.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù)題意得到拐彎處的數(shù)字與其序數(shù)的關系,歸納得到當為奇數(shù)為;當為為偶數(shù)為,分別代入,即可求解.【詳解】解:由題意,拐彎處的數(shù)字與其序數(shù)的關系,如下表:拐彎的序數(shù)012345678拐彎處的數(shù)1235710131721觀察拐彎處的數(shù)字的規(guī)律:第1個數(shù);第3個數(shù);第5個數(shù);第7個數(shù);,所以當為奇數(shù)為;同理可得:當為為偶數(shù)為;第33次拐彎的數(shù)是,當時,可得,當時,可得,所以超過2021第一個拐彎數(shù)是.故答案為:;.14、27【解析】設公比為,利用已知條件求出,然后根據(jù)通項公式可求得答案【詳解】設公比為,插入的三個數(shù)分別為,因為,所以,得,所以,故答案為:2715、或【解析】點關于軸的對稱點為,即反射光線過點,分別討論反射光線的斜率存在與不存在的情況,進而求解即可【詳解】點關于軸的對稱點為,(1)設反射光線的斜率為,則反射光線的方程為,即,因為反射光線與圓相切,所以圓心到反射光線的距離,即,解得,所以反射光線方程為:;(2)當不存在時,反射光線,此時,也與圓相切,故答案為:或【點睛】本題考查直線在光學中的應用,考查圓的切線方程16、2【解析】根據(jù)已知條件,結合拋物線的定義,即可求解【詳解】解:∵拋物線C:y2=2px(p>0)上的點P(1,y0)(y0>0)到焦點的距離為2,∴由拋物線的定義可得,,解得p=2故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2);失效費為6.3萬元【解析】(1)根據(jù)相關系數(shù)公式計算出相關系數(shù)可得結果;(2)根據(jù)公式求出和可得關于的線性回歸方程,再代入可求出結果.【詳解】(1)由題意,知,,∴結合參考數(shù)據(jù)知:因為與的相關系數(shù)近似為0.99,所以與的線性相關程度相當大,從而可以用線性回歸模型擬合與的關系(2)∵,∴∴關于的線性回歸方程為,將代入線性回歸方程得萬元,∴估算該種機械設備使用8年的失效費為6.3萬元18、(1)(2)【解析】(1)由離心率公式以及橢圓的性質(zhì)列出方程組得出橢圓的方程;(2)聯(lián)立直線和橢圓方程,利用韋達定理得出點坐標,最后由距離公式得出直線的方程【小問1詳解】由題意可得,得,,橢圓;【小問2詳解】設,,直線為由,得顯然,由韋達定理有:,則;所以,且,若,解得,所以19、(1)60(2)①1024;②1【解析】(1)根據(jù)二項式定理求解(2)根據(jù)二項式定理與條件求解,二項式系數(shù)之和為,系數(shù)和可賦值【小問1詳解】若,則,(,…,9)令∴∴常數(shù)項為.【小問2詳解】,(,…,),解得①②令,得系數(shù)和為20、(1)證明見解析;(2)證明見解析.【解析】(1)根據(jù)給定條件,利用線面平行的判定推理作答.(2)利用正四棱錐的結構特征,結合線面垂直的判定推理作答.小問1詳解】在正四棱錐中,由正方形得:,而平面,平面,所以平面.【小問2詳解】在正四棱錐中,O為底面對角線的交點,則O是AC,BD的中點,而,,則,,因,平面,所以平面.21、(1)(2)【解析】(1)解不等式求出集合、,然后根據(jù)交集的運算法則求交集;(2)解不等式求出集合、,求出,然后根據(jù)充分不必要性列出不等式組求解.【小問1詳解】解:由題意得:當時,可解得集合的解集為由可解得或故.【小問2詳解】的解集為又又“”是“x∈A”的充分不必要條件解得:,故實數(shù)a的取值范圍22、(1);(2)或.【解析】(1)將圓的方程表示為標準方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學生法學教學中案例分析與實踐教學的課題報告教學研究課題報告
- 2025年上海開放大學發(fā)布工作人員公開招聘8人備考題庫及參考答案詳解一套
- 高中生采用歷史計量法分析文藝復興時期工匠協(xié)作網(wǎng)絡課題報告教學研究課題報告
- 藍色簡約風大學生調(diào)研報告模板
- 2025年南平市浦城縣事業(yè)單位公開招聘35人備考題庫完整答案詳解
- 藍色插畫風工作匯報模板
- 2025年成都市泡桐樹中學教師招聘備考題庫及1套完整答案詳解
- 2025年廈門一中招聘合同制校醫(yī)備考題庫及一套完整答案詳解
- 南京市第一醫(yī)院2026年公開招聘衛(wèi)技人員備考題庫及一套參考答案詳解
- 2025年大連理工大學化工學院張文銳團隊科研助理招聘備考題庫及一套完整答案詳解
- 數(shù)據(jù)倫理保護機制-洞察及研究
- 2025年鋼貿(mào)行業(yè)市場分析現(xiàn)狀
- 2025數(shù)字孿生與智能算法白皮書
- 鄉(xiāng)村醫(yī)生藥品管理培訓
- 2025春季學期國開電大??啤豆芾韺W基礎》一平臺在線形考(形考任務一至四)試題及答案
- 財務保密意識培訓
- 辦公室裝修改造工程合同書
- 教師節(jié)學術交流活動策劃方案
- 瑞幸咖啡認證考試題庫(咖啡師)
- 土方倒運的方案
- 建筑幕墻用陶板標準
評論
0/150
提交評論