版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆河南省鄭州市八校數學高二第一學期期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓與圓的位置關系是()A.相離 B.內含C.相切 D.相交2.等差數列的公差為2,若成等比數列,則()A.72 B.90C.36 D.453.某中學的“希望工程”募捐小組暑假期間走上街頭進行了一次募捐活動,共收到捐款1200元.他們第1天只得到10元,之后采取了積極措施,從第2天起,每一天收到的捐款都比前一天多10元.這次募捐活動一共進行的天數為()A.13 B.14C.15 D.164.若函數的導函數在區(qū)間上是減函數,則函數在區(qū)間上的圖象可能是()A. B.C. D.5.某老師希望調查全校學生平均每天的自習時間.該教師調查了60位學生,發(fā)現他們每天的平均自習時間是3.5小時.這里的總體是()A.楊高的全校學生;B.楊高的全校學生的平均每天自習時間;C.所調查的60名學生;D.所調查的60名學生的平均每天自習時間.6.“且”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件7.在長方體中,若,,則異而直線與所成角的余弦值為()A. B.C. D.8.已知命題:△中,若,則;命題:函數,,則的最大值為.則下列命題是真命題的是()A. B.C. D.9.中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術.如圖所示的圓形剪紙中,正六邊形的所有頂點都在該圓上,若在該圓形剪紙的內部投擲一點,則該點恰好落在正六邊形內部的概率為()A. B.C. D.10.若“”是“”的充分不必要條件,則實數a的取值范圍為A. B.或C. D.11.已知點A、是拋物線:上的兩點,且線段過拋物線的焦點,若的中點到軸的距離為3,則()A.3 B.4C.6 D.812.已知兩個向量,若,則的值為()A. B.C.2 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足,且.則數列的通項公式為_______14.已知函數,則的值是______.15.已知隨機變量,且,則______.16.已知雙曲線的左,右焦點分別為,,過右焦點且傾斜角為直線l與該雙曲線交于M,N兩點(點M位于第一象限),的內切圓半徑為,的內切圓半徑為,則為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:,直線過定點.(1)若與僅有一個公共點,求直線的方程;(2)若與交于A,B兩點,直線OA,OB(其中О為坐標原點)的斜率分別為,,試探究在,,,中,運算結果是否有為定值的?并說明理由.18.(12分)已知點為拋物線的焦點,點在拋物線上,的面積為1.(1)求拋物線的標準方程;(2)設點是拋物線上異于點的一點,直線與直線交于點,過作軸的垂線交拋物線于點,求證:直線過定點.19.(12分)已知點和圓.(1)求圓的圓心坐標和半徑;(2)設為圓上的點,求的取值范圍.20.(12分)已知數列滿足,.(1)求數列的通項公式;(2)記,其中表示不超過最大整數,如,.(i)求、、;(ii)求數列的前項的和.21.(12分)如圖,在四棱柱中,底面,,,且,(1)求證:平面平面;(2)求二面角所成角的余弦值22.(10分)已知拋物線C:經過點(1,-1).(1)求拋物線C的方程及其焦點坐標;(2)過拋物線C上一動點P作圓M:的一條切線,切點為A,求切線長|PA|的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先由圓的方程得出兩圓的圓心坐標和半徑,求出兩圓心間的距離與兩半徑之和與差比較可得答案.【詳解】圓的圓心為,半徑為圓的圓心為,半徑為兩圓心間的距離為由,所以兩圓相交.故選:D2、B【解析】由題意結合成等比數列,有即可得,進而得到、,即可求.【詳解】由題意知:,,又成等比數列,∴,解之得,∴,則,∴,故選:B【點睛】思路點睛:由其中三項成等比數列,利用等比中項性質求項,進而得到等差數列的基本量1、由成等比,即;2、等差數列前n項和公式的應用.3、C【解析】由題意可得募捐構成了一個以10元為首項,以10元為公差的等差數列,設共募捐了天,然后建立關于的方程,求出即可【詳解】由題意可得,第一天募捐10元,第二天募捐20元,募捐構成了一個以10元為首項,以10元為公差的等差數列,根據題意,設共募捐了天,則,解得或(舍去),所以,故選:4、A【解析】根據導數概念和幾何意義判斷【詳解】由題意得,圖象上某點處的切線斜率隨增大而減小,滿足要求的只有A故選:A5、B【解析】由總體的概念可得答案.【詳解】某老師希望調查全校學生平均每天的自習時間,該教師調查了60位學生,發(fā)現他們每天的平均自習時間是3.5小時,這里的總體是全校學生平均每天的自習時間.故選:B.6、B【解析】根據充分條件、必要條件的定義和橢圓的標椎方程,判斷可得出結論.【詳解】解:充分性:當,方程表示圓,充分性不成立;必要性:若方程表示橢圓,則,必有且,必要性成立,因此,“且”是“方程表示橢圓”的必要不充分條件.故選:B.7、C【解析】通過平移把異面直線平移到同一平面中,所以取,的中點,易知且過中心點,所以異而直線與所成角為和所成角,通過解三角形即可得解.【詳解】根據長方體的對稱性可得體對角線過中心點,取,的中點,易知且過中心點,所以異而直線和所成角為和所成角,連接,在中,,,,所以則異而直線與所成角的余弦值為:,故選:C.8、A【解析】由三角形內角及正弦函數的性質判斷、的真假,應用換元法令,結合對勾函數的性質確定的值域即知、的真假,根據各選項復合命題判斷真假即可.【詳解】由且,可得或,故為假命題,為真命題;令,又,則,故,∵在上遞減,∴,故的最大值為.∴為真命題,為假命題;∴為真,為假,為假,為假.故選:A.9、D【解析】設圓的半徑,求出圓的面積與正六邊形的面積,再根據幾何概型的概率公式計算可得;【詳解】解:設圓的半徑,則,則,所以,所以在該圓形剪紙的內部投擲一點,則該點恰好落在正六邊形內部的概率;故選:D10、D【解析】“”是“”的充分不必要條件,結合集合的包含關系,即可求出的取值范圍.【詳解】∵“”是“”的充分不必要條件∴或∴故選:D.【點睛】本題考查充分必要條件,根據充要條件求解參數的范圍時,可把充分條件、必要條件或充要條件轉化為集合間的關系,由此得到不等式(組)后再求范圍.解題時要注意,在利用兩個集合之間的關系求解參數的取值范圍時,不等式是否能夠取等號決定端點值的取舍,處理不當容易出現漏解或增解的現象.11、D【解析】直接根據拋物線焦點弦長公式以及中點坐標公式求結果【詳解】設,,則的中點到軸的距離為,則故選:D12、B【解析】直接利用空間向量垂直的坐標運算計算即可.【詳解】因為,所以,即,解得.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】倒數型求數列通項公式,第一步求倒數,第二步構造數列,求通項.【詳解】因為,所以,所以數列是首項為1,公差為1的等差數列,所以故答案為:.14、【解析】求出,代值計算可得的值.【詳解】因為,則,因此,.故答案為:.15、【解析】根據二項分布的均值與方差的關系求得,再根據方差的性質求解即可.【詳解】,所以,又因為,所以故答案為:12【點睛】本題主要考查了二項分布的均值與方差的計算,同時也考查了方差的性質,屬于基礎題.16、##【解析】設,,,利用雙曲線的定義可得,作出圖形,結合圖形分析,可知與直線的傾斜角相等,利用直角三角形中的邊角關系,即求.【詳解】設的內切圓為圓,與三邊的切點分別為,如圖所示,設,,,設的內切圓為圓,由雙曲線的定義可得,得,由此可知,在中,軸于點,同理可得軸于點,所以軸,過圓心作的垂線,垂足為,因為,所以,∴,即∴,即故答案為:.【點睛】關鍵點點睛,得到是關鍵,說明軸,同時直線的傾斜角與大小相等,計算即得.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或或(2)為定值,而,,均不為定值【解析】(1)過拋物線外一定點的直線恰好與該拋物線只有一個交點,則分兩類分別討論,一是直線與拋物線的對稱軸平行,二是直線與拋物線相切;(2)聯立直線的方程與拋物線的方程,根據韋達定理,分別表示出,,,為直線斜率的形式,便可得出結果.【小問1詳解】過點的直線與拋物線僅有一個公共點,則該直線可能與拋物線的對稱軸平行,也可能與拋物線相切,下面分兩種情況討論:當直線可能與拋物線的對稱軸平行時,則有:當直線與拋物線相切時,由于點在軸上方,且在拋物線外,則存在兩條直線與拋物線相切:易知:是其中一條直線另一條直線與拋物線上方相切時,不妨設直線的斜率為,則有:聯立直線與拋物線可得:可得:則有:解得:故此時的直線的方程為:綜上,直線的方程為:或或【小問2詳解】若與交于A,B兩點,分別設其坐標為,,且由(1)可知直線要與拋物線有兩個交點,則直線的斜率存在且不為,不妨設直線的斜率為,則有:聯立直線與拋物線可得:可得:,即有:根據韋達定理可得:,則有:,下面分別說明各項是否為定值:,故運算結果為定值;,故運算結果不為定值;,故運算結果不為定值;,故運算結果不為定值.綜上,可得:為定值,而,,均不為定值18、(1)(2)證明見解析【解析】(1)由條件列方程求,由此可得拋物線方程;(2)方法一:聯立直線與拋物線方程,結合條件三點共線,可證明直線過定點,方法二:聯立直線與拋物線方程,聯立直線與直線求,由垂直與軸列方程化簡,可證明直線過定點.【小問1詳解】因為點在拋物線上,所以,即,,因為,故解得,拋物線的標準方程為【小問2詳解】設直線的方程為,由,得,所以,由(1)可知當時,,此時直線的方程為,若時,因為三點共線,所以,即,又因為,,化簡可得,又,進而可得,整理得,因為所以,此時直線的方程為,直線恒過定點又直線也過點,綜上:直線過定點解法二:設方程,得若直線斜率存在時斜率方程為即解得:,于是有整理得.(*)代入上式可得所以直線方程為直線過定點.若直線斜率不存在時,直線方程為所以P點坐標為,M點坐標為此時直線方程為過點綜上:直線過定點.【點睛】解決直線與拋物線的綜合問題時,要注意:(1)注意觀察應用題設中的每一個條件,明確確定直線、拋物線的條件;(2)強化有關直線與拋物線聯立得出一元二次方程后的運算能力,重視根與系數之間的關系、弦長、斜率、三角形的面積等問題19、(1)圓心的坐標為,半徑;(2)【解析】(1)利用配方法化圓的一般方程為標準方程,可得圓心坐標與半徑;(2)由兩點間的距離公式求得,得到與,則的取值范圍可求【小問1詳解】解:由,得,圓心的坐標為,半徑;【小問2詳解】解:,,,,的取值范圍是20、(1);(2)(i),,;(ii).【解析】(1)推導出數列為等差數列,確定該數列的首項和公差,即可求得數列的通項公式;(2)(i)利用對數函數的單調性結合題中定義可求得、、的值;(ii)分別解不等式、、,結合題中定義可求得數列的前項的和.【小問1詳解】解:因為,,則,可得,,可得,以此類推可知,對任意的,.由,變形為,是一個以為公差的等差數列,且首項為,所以,,因此,.【小問2詳解】解:(i),則,,則,故,,則,故;(ii),當時,即當時,,當時,即當時,,當時,即當時,,因此,數列的前項的和為.21、(1)證明見解析;(2).【解析】(1)證出,,由線面垂直的判定定理可得平面,再根據面面垂直的判定定理即可證明.(2)分別以,,為,,軸,建立空間直角坐標系,求出平面的一個法向量以及平面的一個法向量,由即可求解.【詳解】(1)證明:因為,,所以,,因為,所以,所以,即因為底面,所以底面,所以因為,所以平面,又平面,所以平面平面(2)解:如圖,分別以,,為,,軸,建立空間直角坐標系,則,,,,所以,,,設平面的法向量為,則令,得設平面的法向量為,則令,得,所以,由圖知二面角為銳角,所以二面角所成角的余弦值為【點睛】思路點睛:解決二面角相關問題通常用向量法,具體步驟為:(1)建坐標系,建立坐標系的原則是盡可能的使得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46805-2025食品用自熱裝置質量通則
- 2025年石獅市瓊林中心幼兒園合同教師招聘備考題庫含答案詳解
- 2026年中共濰坊市委外事工作委員會辦公室所屬事業(yè)單位公開招聘工作人員備考題庫及一套參考答案詳解
- 2025年北京協(xié)和醫(yī)院腫瘤內科合同制科研助理招聘備考題庫參考答案詳解
- 2026年發(fā)行服務合同
- 2026年國際信息安全體系認證合同
- 2026年線上旅行預約合同
- 2025年江西省機關事務管理局公開選調事業(yè)單位工作人員15人備考題庫帶答案詳解
- 2025年臨清市財政局(國資局)公開招聘市屬國有企業(yè)副總經理的備考題庫及答案詳解參考
- 2025年珠海市共樂幼教集團三溪園區(qū)(三溪幼兒園)公開招聘合同制專任教師備考題庫及參考答案詳解
- 2025年新疆維吾爾自治區(qū)哈密市法院、檢察院系統(tǒng)面向社會公開招聘聘用制書記員31人備考題庫完整答案詳解
- 2025年青海公務員《行政職業(yè)能力測驗》試題及答案
- 輸液空氣的栓塞及預防
- 移動公司客戶經理述職報告
- 中建鋼筋工程優(yōu)化技術策劃指導手冊 (一)
- 12J12無障礙設施圖集
- 膦甲酸鈉的醫(yī)藥市場分析與展望
- 電力市場概論張利課后參考答案
- 超市防損培訓課件
- 2024年福建省2024屆高三3月省質檢(高中畢業(yè)班適應性練習卷)英語試卷(含答案)
- 污水源熱泵技術RBL北京瑞寶利熱能科技有限公司
評論
0/150
提交評論