2026屆四川省樂山四中高二上數(shù)學期末統(tǒng)考試題含解析_第1頁
2026屆四川省樂山四中高二上數(shù)學期末統(tǒng)考試題含解析_第2頁
2026屆四川省樂山四中高二上數(shù)學期末統(tǒng)考試題含解析_第3頁
2026屆四川省樂山四中高二上數(shù)學期末統(tǒng)考試題含解析_第4頁
2026屆四川省樂山四中高二上數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆四川省樂山四中高二上數(shù)學期末統(tǒng)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平形六面體中,其中,,,,,則的長為()A. B.C. D.2.不等式的解集為()A. B.C.或 D.或3.已知,若,則的取值范圍為()A. B.C. D.4.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0公共弦所在直線方程為()A. B.C. D.5.已知等比數(shù)列中,,,則該數(shù)列的公比為()A. B.C. D.6.已知空間向量,,且與互相垂直,則k的值是()A.1 B.C. D.7.點F是拋物線的焦點,點,P為拋物線上一點,P不在直線AF上,則△PAF的周長的最小值是()A.4 B.6C. D.8.設F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以OF為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.9.如圖是一個程序框圖,執(zhí)行該程序框圖,則輸出的n值是()A.2 B.3C.4 D.510.橢圓的短軸長為()A.8 B.2C.4 D.11.已知直線過點,且與直線垂直,則直線的方程為()A. B.C. D.12.已知的展開式中,各項系數(shù)的和與其各項二項式系數(shù)的和之比為,則()A.4 B.5C.6 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知點,點是直線上的動點,則的最小值是_____________14.若雙曲線的漸近線方程為,則該雙曲線的離心率為___________;若,則雙曲線的右焦點到漸近線的距離為__________.15.數(shù)列滿足,,則______.16.在平面直角坐標系xOy中,AB是圓O:x2+y2=1的直徑,且點A在第一象限;圓O1:(x﹣a)2+y2=r2(a>0)與圓O外離,線段AO1與圓O1交于點M,線段BM與圓O交于點N,且,則a的取值范圍為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)新型冠狀病毒的傳染主要是人與人之間進行傳播,感染人群年齡大多數(shù)是歲以上人群.該病毒進入人體后有潛伏期.潛伏期是指病原體侵入人體至最早出現(xiàn)臨床癥狀的這段時間.潛伏期越長,感染到他人的可能性越高.現(xiàn)對個病例的潛伏期(單位:天)進行調查,統(tǒng)計發(fā)現(xiàn)潛伏期平均數(shù)為,方差為.如果認為超過天的潛伏期屬于“長潛伏期”,按照年齡統(tǒng)計樣本,得到下面的列聯(lián)表:年齡/人數(shù)長期潛伏非長期潛伏50歲以上6022050歲及50歲以下4080(1)是否有的把握認為“長期潛伏”與年齡有關;(2)假設潛伏期服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.(i)現(xiàn)在很多省市對入境旅客一律要求隔離天,請用概率知識解釋其合理性;(ii)以題目中的樣本頻率估計概率,設個病例中恰有個屬于“長期潛伏”的概率是,當為何值時,取得最大值.附:0.10.050.0102.7063.8416.635若,則,,.18.(12分)如圖,正方形與梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,為的中點(1)求證:平面平面;(2)求二面角的正切值19.(12分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.點E在PC上.(1)求證:平面BDE⊥平面PAC;(2)若E為PC的中點,求直線PC與平面AED所成的角的正弦值.20.(12分)在棱長為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個法向量.21.(12分)已知函數(shù)在時有極值0.(1)求函數(shù)的解析式;(2)記,若函數(shù)有三個零點,求實數(shù)的取值范圍.22.(10分)已知數(shù)列為等差數(shù)列,滿足,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和,并求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)空間向量基本定理、加法的運算法則,結合空間向量數(shù)量積的運算性質進行求解即可.【詳解】因為是平行六面體,所以,所以有:,因此有:,因為,,,,,所以,所以,故選:B2、A【解析】先將分式不等式轉化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A3、C【解析】根據(jù)題意,由為原點到直線上點的距離的平方,再根據(jù)點到直線垂線段最短,即可求得范圍.【詳解】由,,視為原點到直線上點的距離的平方,根據(jù)點到直線垂線段最短,可得,所有的取值范圍為,故選:C.4、B【解析】兩圓的方程消掉二次項后的二元一次方程即為公共弦所在直線方程.【詳解】由x2+y2-4=0與x2+y2-4x+4y-12=0兩式相減得:,即.故選:B5、C【解析】設等比數(shù)列的公比為,可得出,即可得解.【詳解】設等比數(shù)列的公比為,可得出.故選:C.6、D【解析】由=0可求解【詳解】由題意,故選:D7、C【解析】由拋物線的定義轉化后求距離最值【詳解】拋物線的焦點,準線為過點作準線于點,故△PAF的周長為,,可知當三點共線時周長最小,為故選:C8、A【解析】準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關系,可求雙曲線的離心率【詳解】設與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心,又點在圓上,,即,故選A【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來9、B【解析】程序框圖中的循環(huán)結構,一般需重復計算,根據(jù)判斷框中的條件,確定何時終止循環(huán),輸出結果.【詳解】初始值:,當時,,進入循環(huán);當時,,進入循環(huán);當時,,終止循環(huán),輸出的值為3.故選:B10、C【解析】根據(jù)橢圓的標準方程求出,進而得出短軸長.【詳解】由,可得,所以短軸長為.故選:C.11、A【解析】求出直線斜率,利用點斜式可得出直線的方程.【詳解】直線的斜率為,則直線的斜率為,故直線的方程為,即.故選:A.12、C【解析】利用賦值法確定展開式中各項系數(shù)的和以及二項式系數(shù)的和,利用比值為,列出關于的方程,解方程.【詳解】二項式的各項系數(shù)的和為,二項式的各項二項式系數(shù)的和為,因為各項系數(shù)的和與其各項二項式系數(shù)的和之比為,所以,.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直接根據(jù)點到直線的距離公式即可求出【詳解】線段最短時,與直線垂直,所以,的最小值即為點到直線的距離,則.故答案為:.14、①.②.3【解析】由漸近線方程知,結合雙曲線參數(shù)關系及離心率的定義求雙曲線的離心率,由已知可得右焦點為,應用點線距離公式求距離.【詳解】由題設,,則,當時,,則雙曲線為,故右焦點為,所以右焦點到漸近線的距離為.故答案為:,3.15、【解析】根據(jù)遞推關系依次求得的值.【詳解】依題意數(shù)列滿足,,所以.故答案為:16、【解析】根據(jù)判斷出四邊形為平行四邊形,由此求得圓的方程以及的長,進而判斷出點在圓上,根據(jù)圓與圓的位置關系,求得的取值范圍.【詳解】四邊形ONO1M為平行四邊形,即ON=MO1=r=1,所以圓的方程為,且ON為△ABM的中位線AM=2ON=2AO1=3,故點A在以O1為圓心,3為半徑的圓上,該圓的方程為:,故與x2+y2=1在第一象限有交點,即2<a<4,由,解得,故a的取值范圍為(,4).故答案為:【點睛】本小題主要考查圓與圓的位置關系,考查化歸與轉化的數(shù)學思想方法,考查數(shù)形結合的數(shù)學思想方法,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)有;(2)(i)答案見解析;(ii)250.【解析】(1)根據(jù)列聯(lián)表中的數(shù)據(jù),利用求得,與臨界表值對比下結論;(2)(ⅰ)根據(jù),利用小概率事件判斷;(ⅱ)易得一個患者屬于“長潛伏期”的概率是,進而得到,然后判斷其單調性求解.【詳解】(1)依題意有,由于,故有的把握認為“長期潛伏”與年齡有關;(2)(ⅰ)若潛伏期,由,得知潛伏期超過天的概率很低,因此隔離天是合理的;(ⅱ)由于個病例中有個屬于長潛伏期,若以樣本頻率估計概率,一個患者屬于“長潛伏期”的概率是,于是,則,,當時,;當時,;∴,.故當時,取得最大值.【點睛】方法點睛:利用獨立重復試驗概率公式可以簡化求概率的過程,但需要注意檢查該概率模型是否滿足公式的三個條件:(1)在一次試驗中某事件A發(fā)生的概率是一個常數(shù)p;(2)n次試驗不僅是在完全相同的情況下進行的重復試驗,而且各次試驗的結果是相互獨立的;(3)該公式表示n次試驗中事件A恰好發(fā)生了k次的概率18、(1)見解析;(2).【解析】(1)證明BC⊥平面BDE即可;(2)以D為原點,DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標系D-xyz,求平面BMD和平面BCD的法向量,利用法向量的求二面角的余弦,再求正切﹒【小問1詳解】∵ADEF為正方形∴ED⊥AD又∵正方形ADEF與梯形ABCD所在的平面互相垂直,且ED?平面ADEF∴ED⊥平面ABCD∵BC?平面ABCD∴ED⊥BC在直角梯形ABCD中,|AB|=|AD|=2,|CD|=4,則,|BD|=2,在△BCD中,,∴BC⊥BD∵DE∩BD=D,DE與BD平面BDE,∴BC⊥平面BDE又∵BC?平面BEC∴平面BDE⊥平面BEC;【小問2詳解】由(1)知ED⊥平面ABCD∵CD平面ABCD,∴CD⊥ED,∴DA,DC,DE三線兩兩垂直,故以D為原點,DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標系D-xyz:則,則設為平面BDM的法向量,則,取,取平面BCD的法向量為,設二面角的大小為θ,則,∴.19、(1)證明見解析;(2)【解析】(1)根據(jù)題意可判斷出ABCD是正方形,從而可得,再根據(jù),由線面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可證出;(2)由、、兩兩垂直可建立空間直角坐標系,利用向量法即可求出直線PC與平面AED所成的角的正弦值.【小問1詳解】因為PA⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小問2詳解】由題可知、、兩兩垂直,建系如圖,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,設平面的一個法向量為,則,,即,取,0,,所以直線與平面所成的角的正弦值為20、【解析】建立空間直角坐標系,由向量法求法向量即可.【詳解】如圖,建立空間直角坐標系,則設平面ACD1的法向量.,又為平面ACD1的一個法向量,化簡得令x=1,得y=z=1.平面ACD1的一個法向量.【點睛】本題主要考查了求平面的法向量,屬于中檔題.21、(1)(2)【解析】(1)求出函數(shù)的導函數(shù),由在時有極值0,則,兩式聯(lián)立可求常數(shù)a,b的值,從而得解析式;(2)利用導數(shù)研究函數(shù)的單調性、極值,根據(jù)函數(shù)圖象的大致形狀可求出參數(shù)的取值范圍.【小問1詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論