山西省陽泉市2025年高二上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
山西省陽泉市2025年高二上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
山西省陽泉市2025年高二上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
山西省陽泉市2025年高二上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
山西省陽泉市2025年高二上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省陽泉市2025年高二上數(shù)學(xué)期末聯(lián)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓方程為,點(diǎn)在橢圓上,右焦點(diǎn)為F,過原點(diǎn)的直線與橢圓交于A,B兩點(diǎn),若,則橢圓的方程為()A. B.C. D.2.已知拋物線=的焦點(diǎn)為F,M、N是拋物線上兩個(gè)不同的點(diǎn),若,則線段MN的中點(diǎn)到y(tǒng)軸的距離為()A.8 B.4C. D.93.如圖是拋物線拱形橋,當(dāng)水面在時(shí),拱頂離水面,水面寬,若水面上升,則水面寬是()(結(jié)果精確到)(參考數(shù)值:)A B.C. D.4.“”是“函數(shù)在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知,,,則點(diǎn)C到直線AB的距離為()A.3 B.C. D.6.如圖,在棱長(zhǎng)為2的正方體中,點(diǎn)P在截面上(含邊界),則線段的最小值等于()A. B.C. D.7.已知是等比數(shù)列,則()A.數(shù)列是等差數(shù)列 B.數(shù)列是等比數(shù)列C.數(shù)列是等差數(shù)列 D.數(shù)列是等比數(shù)列8.已知向量,則下列結(jié)論正確的是()A.B.C.D.9.?dāng)?shù)列,,,,…,的通項(xiàng)公式可能是()A. B.C. D.10.某次射擊比賽中,某選手射擊一次擊中10環(huán)的概率是,連續(xù)兩次均擊中10環(huán)的概率是,已知某次擊中10環(huán),則隨后一次擊中10環(huán)的概率是A. B.C. D.11.已知雙曲線的左、右焦點(diǎn)分別為,過點(diǎn)的直線與圓相切于點(diǎn),交雙曲線的右支于點(diǎn),且點(diǎn)是線段的中點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.12.設(shè)平面的法向量為,平面的法向量為,若,則的值為()A.-5 B.-3C.1 D.7二、填空題:本題共4小題,每小題5分,共20分。13.寫出同時(shí)滿足以下三個(gè)條件的數(shù)列的一個(gè)通項(xiàng)公式______.①不是等差數(shù)列,②是等比數(shù)列,③是遞增數(shù)列14.已知向量,,若,則實(shí)數(shù)m的值是___________.15.已知數(shù)列為嚴(yán)格遞增數(shù)列,且對(duì)任意,都有且.若對(duì)任意恒成立,則________16.等差數(shù)列前3項(xiàng)的和為30,前6項(xiàng)的和為100,則它的前9項(xiàng)的和為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),且存在兩個(gè)極值點(diǎn)、,其中.(1)求實(shí)數(shù)的取值范圍;(2)若恒成立,求最小值.18.(12分)已知函數(shù).(1)若,求函數(shù)在處的切線方程;(2)討論函數(shù)在上的單調(diào)性.19.(12分)已知橢圓的離心率為,右焦點(diǎn)為F,且E上一點(diǎn)P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點(diǎn),線段AB過點(diǎn)F,且其垂直平分線交x軸于H點(diǎn),,求20.(12分)如圖,已知四棱臺(tái)的上、下底面分別是邊長(zhǎng)為2和4的正方形,,且底面,點(diǎn)分別在棱、上·(1)若P是的中點(diǎn),證明:;(2)若平面,二面角的余弦值為,求四面體的體積21.(12分)已知數(shù)列的前n項(xiàng)和,遞增等比數(shù)列滿足,且.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和為.22.(10分)從甲、乙兩名學(xué)生中選拔一人參加射擊比賽,現(xiàn)對(duì)他們的射擊水平進(jìn)行測(cè)試,兩人在相同條件下各射靶10次,每次命中的環(huán)數(shù)如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你認(rèn)為應(yīng)該選哪名學(xué)生參加比賽?為什么?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【詳解】由點(diǎn)在橢圓上得,由橢圓的對(duì)稱性可得,則,故橢圓方程為.故選:A.2、B【解析】過分別作垂直于準(zhǔn)線,垂足為,則由拋物線的定義可得,再過MN的中點(diǎn)作垂直于準(zhǔn)線,垂足為,然后利用梯形的中位線定理可求得結(jié)果【詳解】拋物線=的焦點(diǎn),準(zhǔn)線方程為直線如圖,過分別作垂直于準(zhǔn)線,垂足為,過MN的中點(diǎn)作垂直于準(zhǔn)線,垂足為,則由拋物線的定義可得,因?yàn)椋?,因?yàn)槭翘菪蔚闹形痪€,所以,所以線段MN的中點(diǎn)到y(tǒng)軸的距離為4,故選:B3、C【解析】先建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,將點(diǎn)坐標(biāo)代入拋物線方程求出m,從而可得拋物線方程,再令y=代入拋物線方程求出x,即可得到答案【詳解】解:如圖建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,由題意,將代入x2=my,得m=,所以拋物線的方程為x2=,令y=,解得,所以水面寬度為2.24×817.9m故選:C4、B【解析】對(duì)求導(dǎo),取得函數(shù)在上有極值的等價(jià)條件,再根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可【詳解】解:,則,令,可得,當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,所以,函數(shù)在處取得極小值,若函數(shù)在上有極值,則,,因?yàn)?,但是由推不出,因此是函?shù)在上有極值的必要不充分條件故選:B5、D【解析】應(yīng)用空間向量的坐標(biāo)運(yùn)算求在上投影長(zhǎng)及的模長(zhǎng),再應(yīng)用勾股定理求點(diǎn)C到直線AB的距離.【詳解】因?yàn)椋?,所以設(shè)點(diǎn)C到直線AB的距離為d,則故選:D6、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長(zhǎng)為2,則,,設(shè)到平面的距離為,由得,解得故選:B7、B【解析】取,可判斷AC選項(xiàng);利用等比數(shù)列的定義可判斷B選項(xiàng);取可判斷D選項(xiàng).【詳解】若,則、無意義,A錯(cuò)C錯(cuò);設(shè)等比數(shù)列的公比為,則,(常數(shù)),故數(shù)列是等比數(shù)列,B對(duì);取,則,數(shù)列為等比數(shù)列,因?yàn)?,,,且,所以,?shù)列不是等比數(shù)列,D錯(cuò).故選:B.8、D【解析】由題可知:,,,故選;D9、D【解析】利用數(shù)列前幾項(xiàng)排除A、B、C,即可得解;【詳解】解:由,排除A,C,由,排除B,分母為奇數(shù)列,分子為,故數(shù)列的通項(xiàng)公式可以為,故選:D10、B【解析】根據(jù)條件概率的計(jì)算公式,得所求概率為,故選B.11、D【解析】焦點(diǎn)三角形問題,可結(jié)合為三角形的中位線,判斷:焦點(diǎn)三角形為直角三角形,并且有,,可由勾股定理得出關(guān)系,從而得到關(guān)系,從而求得漸近線方程.【詳解】由題意知,,且點(diǎn)是線段的中點(diǎn),點(diǎn)是線段的中點(diǎn),為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點(diǎn)睛】雙曲線上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形,稱為雙曲線的焦點(diǎn)三角形,與焦點(diǎn)三角形有關(guān)的計(jì)算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關(guān)系12、C【解析】根據(jù),可知向量建立方程求解即可.【詳解】由題意根據(jù),可知向量,則有,解得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由條件②寫出一個(gè)等比數(shù)列,再求出并確保單調(diào)遞增即可作答.【詳解】因是等比數(shù)列,令,當(dāng)時(shí),,,是遞增數(shù)列,令是互不相等的三個(gè)正整數(shù),且,若,,成等差數(shù)列,則,即,則有,顯然、都是正整數(shù),,都是偶數(shù),于是得是奇數(shù),從而有不成立,即,,不成等差數(shù)列,數(shù)列不成等差數(shù)列,所以.故答案為:14、【解析】結(jié)合已知條件和空間向量的數(shù)量積的坐標(biāo)公式即可求解.【詳解】因?yàn)椋?,解?故答案為:.15、66【解析】根據(jù)恒成立和嚴(yán)格遞增可得,然后利用遞推求出,的值,不難發(fā)現(xiàn)在此兩項(xiàng)之間的所有項(xiàng)為連續(xù)正整數(shù),于是可得,,然后可解.【詳解】因?yàn)?,且?shù)列為嚴(yán)格遞增數(shù)列,所以或,若,則(矛盾),故由可得:,,,,,,,,,,,,,因,,,且數(shù)列為嚴(yán)格遞增數(shù)列,,所以,,所以,所以故答案為:6616、210【解析】依題意,、、成等差數(shù)列,從而可求得答案【詳解】∵等差數(shù)列{an}的前3項(xiàng)和為30,前6項(xiàng)和為100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差數(shù)列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),熟練利用、、成等差數(shù)列是關(guān)鍵,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)存在兩個(gè)極值點(diǎn),等價(jià)于其導(dǎo)函數(shù)有兩個(gè)相異零點(diǎn);(2)適當(dāng)構(gòu)造函數(shù),并注意與關(guān)系,轉(zhuǎn)化為函數(shù)求最大值問題,即可求得的范圍.【小問1詳解】(),,函數(shù)存在兩個(gè)極值點(diǎn)、,且,關(guān)于的方程,即在內(nèi)有兩個(gè)不等實(shí)根,令,,即,,實(shí)數(shù)的取值范圍是.【小問2詳解】函數(shù)在上有兩個(gè)極值點(diǎn),由(1)可得,由,得,則,,,,,,,,令,則且,令,,,再設(shè),則,,,即在上是減函數(shù),(1),,在上是增函數(shù),(1),,恒成立,恒成立,,的最小值為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查導(dǎo)函數(shù),函數(shù)的單調(diào)性,最值,不等式證明,考查學(xué)生分析解決問題的能力,解題的關(guān)鍵是將恒成立,轉(zhuǎn)化為恒成立,化簡(jiǎn),令,則化為,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最大值即可,屬于較難題18、(1)(2)答案見解析【解析】(1)求出導(dǎo)函數(shù)后計(jì)算得斜率,由點(diǎn)斜式得直線方程并整理;(2)求出導(dǎo)函數(shù),然后分類討論它在上的正負(fù)得單調(diào)性【小問1詳解】當(dāng)時(shí),,則,故切線的斜率.又.所以函數(shù)在處的切線方程為:.【小問2詳解】由,得①當(dāng)時(shí),在上單調(diào)遞減;②當(dāng)時(shí),在上單調(diào)遞減;③當(dāng)時(shí),令,得當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在單調(diào)遞增;④當(dāng)時(shí),在上單調(diào)遞增;綜上:當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增.19、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長(zhǎng),求出直線方程,解出點(diǎn)的坐標(biāo)即可得解.【詳解】(1)橢圓的離心率為,右焦點(diǎn)為F,且E上一點(diǎn)P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點(diǎn),線段AB過點(diǎn)F,且其垂直平分線交x軸于H點(diǎn),所以線段AB所在直線斜率一定存在,所以設(shè)該直線方程代入,整理得:,設(shè),,,整理得:,當(dāng)時(shí),線段中點(diǎn)坐標(biāo),中垂線方程:,;當(dāng)時(shí),線段中點(diǎn)坐標(biāo),中垂線方程:,,綜上所述:.20、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,利用空間向量的坐標(biāo)運(yùn)算知,即可證得結(jié)論;(2)利用空間向量結(jié)合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問1詳解】以為坐標(biāo)原點(diǎn),,,所在直線分別為,,軸建立空間直角坐標(biāo)系,則,,,,設(shè),其中,,若是的中點(diǎn),則,,,于是,∴,即【小問2詳解】由題設(shè)知,,,是平面內(nèi)的兩個(gè)不共線向量設(shè)是平面的一個(gè)法向量,則,取,得又平面的一個(gè)法向量是,∴,而二面角的余弦值為,因此,解得或(舍去),此時(shí)設(shè),而,由此得點(diǎn),,∵平面,且平面的一個(gè)法向量是,∴,即,解得,從而將四面體視為以為底面的三棱錐,則其高,故四面體的體積【點(diǎn)睛】方法點(diǎn)睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對(duì)應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計(jì)算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.21、(1),(2)【解析】(1)先求,再由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論