版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省吉安市吉水中學(xué)2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德并稱為亞歷山大時期數(shù)學(xué)三巨匠,他對圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓就是他的研究成果之一.指的是:已知動點與兩定點的距離之比,那么點的軌跡就是阿波羅尼斯圓.已知動點的軌跡是阿波羅尼斯圓,其方程為,其中,定點為軸上一點,定點的坐標為,若點,則的最小值為()A. B.C. D.2.已知點是拋物線的焦點,點為拋物線上的任意一點,為平面上點,則的最小值為A.3 B.2C.4 D.3.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖像如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.4.已知在等比數(shù)列中,,,則()A.9或 B.9C.27或 D.275.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.6.若兩直線與互相垂直,則k的值為()A.1 B.-1C.-1或1 D.27.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使8.已知是函數(shù)的導(dǎo)函數(shù),則()A0 B.2C.4 D.69.若構(gòu)成空間的一個基底,則下列向量能構(gòu)成空間的一個基底的是()A.,, B.,,C.,, D.,,10.已知等差數(shù)列的公差,是與的等比中項,則()A. B.C. D.11.某校開學(xué)“迎新”活動中要把3名男生,2名女生安排在5個崗位,每人安排一個崗位,每個崗位安排一人,其中甲崗位不能安排女生,則安排方法的種數(shù)為()A.72 B.56C.48 D.3612.已知F是雙曲線的右焦點,過F且垂直于x軸的直線交E于A,B兩點,若E的漸近線上恰好存在四個點,,,,使得,則E的離心率的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù),若,則的值等于_______14.分別過橢圓的左、右焦點、作兩條互相垂直的直線、,它們的交點在橢圓的內(nèi)部,則橢圓的離心率的取值范圍是________15.如圖,E,F(xiàn)分別是三棱錐的棱AD,BC的中點,,,,則異面直線AB與EF所成的角為______.16.螺旋線這個名詞來源于希臘文,它的原意是“旋卷”或“纏卷”,平面螺旋便是以一個固定點開始向外逐圈旋繞而形成的曲線,如下圖(1)所示.如圖(2)所示陰影部分也是一個美麗的螺旋線型的圖案,它的畫法是這樣的:正方形ABCD的邊長為4,取正方形ABCD各邊的四等分點E,F(xiàn),G,H,作第2個正方形EFGH,然后再取正方形EFGH各邊的四等分點M,N,P,Q,作第3個正方形MNPQ,依此方法一直繼續(xù)下去,就可以得到陰影部分的圖案.如圖(2)陰影部分,設(shè)直角三角形AEH面積為,直角三角形EMQ面積為,后續(xù)各直角三角形面積依次為,…,,若數(shù)列的前n項和恒成立,則實數(shù)的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的公差為2,且,,成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前項和.18.(12分)已知等比數(shù)列{an}中,a1=1,且2a2是a3和4a1的等差中項.數(shù)列{bn}滿足b1=1,b7=13,且bn+2+bn=2bn+1.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{an+bn}前n項和Tn.19.(12分)已知a>0,b>0,a+b=1,求證:.20.(12分)已知點,,設(shè)動點P滿足直線PA與PB的斜率之積為,記動點P的軌跡為曲線E(1)求曲線E的方程;(2)若動直線l經(jīng)過點,且與曲線E交于C,D(不同于A,B)兩點,問:直線AC與BD的斜率之比是否為定值?若為定值,求出該定值;若不為定值,請說明理由21.(12分)某工廠修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米(1)求底面積,并用含x的表達式表示池壁面積;(2)怎樣設(shè)計水池能使總造價最低?最低造價是多少?22.(10分)新冠疫情下,有一學(xué)校推出了食堂監(jiān)管力度的評價與食品質(zhì)量的評價系統(tǒng),每項評價只有合格和不合格兩個選項,師生可以隨時進行評價,某工作人員利用隨機抽樣的方法抽取了200位師生的信息,發(fā)現(xiàn)對監(jiān)管力度滿意的占75%,對食品質(zhì)量滿意的占60%,其中對監(jiān)管力度和食品質(zhì)量都滿意的有80人.(1)完成列聯(lián)表,試問:是否有99%的把握判斷監(jiān)管力度與食品質(zhì)量有關(guān)聯(lián)?監(jiān)督力度情況食品質(zhì)量情況對監(jiān)督力度滿意對監(jiān)督力度不滿意總計對食品質(zhì)量滿意80對食品質(zhì)量不滿意總計200(2)為了改進工作作風(fēng),針對抽取的200位師生,對監(jiān)管力度不滿意的人抽取3位征求意見,用X表示3人中對監(jiān)管力度與食品質(zhì)量都不滿意的人數(shù),求X的分布列與均值.參考公式:,其中.參考數(shù)據(jù):①當時,有90%的把握判斷變量A、B有關(guān)聯(lián);②當時,有95%的把握判斷變量A、B有關(guān)聯(lián);③當時,有99%的把握判斷變量A、B有關(guān)聯(lián).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè),,根據(jù)和求出a的值,由,兩點之間直線最短,可得的最小值為,根據(jù)坐標求出即可.【詳解】設(shè),,所以,由,所以,因為且,所以,整理可得,又動點M的軌跡是,所以,解得,所以,又,所以,因為,所以的最小值,當M在位置或時等號成立.故選:D2、A【解析】作垂直準線于點,根據(jù)拋物線的定義,得到,當三點共線時,的值最小,進而可得出結(jié)果.【詳解】如圖,作垂直準線于點,由題意可得,顯然,當三點共線時,的值最?。灰驗?,,準線,所以當三點共線時,,所以.故選A【點睛】本題主要考查拋物線上任一點到兩定點距離的和的最值問題,熟記拋物線的定義與性質(zhì)即可,屬于??碱}型.3、D【解析】根據(jù)函數(shù)的單調(diào)性得到導(dǎo)數(shù)的正負,從而得到函數(shù)的圖象.【詳解】由函數(shù)的圖象可知,當時,單調(diào)遞增,則,所以A選項和C選項錯誤;當時,先增,再減,然后再增,則先正,再負,然后再正,所以B選項錯誤.故選:D.【點睛】本題主要考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,意在考查學(xué)生對該知識的掌握水平,屬于基礎(chǔ)題.一般地,函數(shù)在某個區(qū)間可導(dǎo),,則在這個區(qū)間是增函數(shù);函數(shù)在某個區(qū)間可導(dǎo),,則在這個區(qū)間是減函數(shù).4、B【解析】根據(jù)等比數(shù)列的性質(zhì)可求.【詳解】因為為等比數(shù)列,設(shè)公比為,則,解得,又,所以.故選:B.5、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設(shè)外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C6、B【解析】根據(jù)互相垂直的兩直線的性質(zhì)進行求解即可.【詳解】由,因此直線的斜率為,直線的斜率為,因為兩直線與互相垂直,所以,故選:B7、B【解析】根據(jù)特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結(jié)論否定,所以“,使”的否定為“,有”,故選:B.8、D【解析】由導(dǎo)數(shù)運算法則求出導(dǎo)函數(shù),再計算導(dǎo)數(shù)值【詳解】由題意,,所以故選:D9、B【解析】由空間向量內(nèi)容知,構(gòu)成基底的三個向量不共面,對選項逐一分析【詳解】對于A:,因此A不滿足題意;對于B:根據(jù)題意知道,,不共面,而和顯然位于向量和向量所成平面內(nèi),與向量不共面,因此B正確;對于C:,故C不滿足題意;對于D:顯然有,選項D不滿足題意.故選:B10、C【解析】由等比中項的性質(zhì)及等差數(shù)列通項公式可得即可求.【詳解】由,則,可得.故選:C.11、A【解析】以位置優(yōu)先法去安排即可解決.【詳解】第一步:安排甲崗位,由3名男生中任選1人,有3種方法;第二步:安排余下的4個崗位,由2名女生和余下的2名男生任意安排即可,有種方法故安排方法的種數(shù)為故選:A12、D【解析】由題意以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點,則必有,又當圓M經(jīng)過原點時此時以AB為直徑的圓M上與雙曲線E的漸近線有三個不同的交點,不滿足,從而得出答案.【詳解】由題意,由得,雙曲線的漸近線方程為所以,由,可知,,,在以AB為直徑的圓M上,圓的半徑為即以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點當圓M與漸近線相切時,圓心到漸近線的距離,則必有,即,則雙曲線E的離心率,所以又當圓M經(jīng)過原點時,,解得E的離心率為,此時以AB為直徑圓M與雙曲線E的漸近線有三個不同的交點,不滿足條件.所以E的離心率的取值范圍是.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對函數(shù)進行求導(dǎo),把代入導(dǎo)函數(shù)中,化簡即可求出的值.【詳解】函數(shù).故答案為:.14、【解析】根據(jù)條件可知以為直徑的圓在橢圓的內(nèi)部,可得,再根據(jù),即可求得離心率的取值范圍.【詳解】根據(jù)條件可知,以為直徑的圓與橢圓沒有交點,即,即,,即.故填:.【點睛】本題考查橢圓離心率的取值范圍,求橢圓離心率是??碱}型,涉及的方法包含1.根據(jù)直接求,2.根據(jù)條件建立關(guān)于的齊次方程求解,3.根據(jù)幾何關(guān)系找到的等量關(guān)系求解.15、【解析】取的中點,連結(jié),由分別為的中點,可得(或其補角)為異面直線AB與EF所成的角,在求解即可.【詳解】取的中點,連結(jié)由分別為的中點,則所以(或其補角)為異面直線AB與EF所成的角由分別是的中點,則,又在中,,則所以,又,所以在直角中,故答案為:16、或【解析】先求正方形邊長的規(guī)律,再求三角形面積的規(guī)律,從而就可以求和了,再解不等式即可求解.【詳解】由題意,由外到內(nèi)依次各正方形的邊長分別為,則,,……,,于是數(shù)列是以4為首項,為公比的等比數(shù)列,則.由題意可得:,即……,于是.,故解得或.故答案為:或三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由,,成等比數(shù)列和,可得,解方程求出,從而可求出的通項公式,(2)由(1)可得,然后利用裂項相消法可求出【小問1詳解】因為等差數(shù)列的公差為2,所以又因為成等比數(shù)列,所以,解得,所以.【小問2詳解】由(1)得,所以.18、(1);(2).【解析】(1)根據(jù)已知條件求出等比數(shù)列的公比,然后利用等比數(shù)列通項公式求解即可;(2)根據(jù)已知求出數(shù)列的通項公式,再結(jié)合(1)中結(jié)論并利用分組求和法求解即可.【詳解】(1)設(shè)等比數(shù)列公比為q,因為,所以,因為是和的等差中項,所以,即,解得,所以.故答案為:.(2)因為,所以為等差數(shù)列,因為,,所以公差,故.所以.故答案為:.19、見解析【解析】將代入式子,得到,,進而進行化簡,最后通過基本不等式證明問題.【詳解】∵,,,∴,.∴=,當且僅當,即時取“=”20、(1);(2)直線AC和BD的斜率之比為定值【解析】(1)設(shè),依據(jù)兩點的斜率公式可求得曲線E的方程(2)設(shè)直線l:,,,聯(lián)立方程得,得出根與系數(shù)的關(guān)系,表示直線AC的斜率,直線BD的斜率,并代入計算,可得其定值.【詳解】解:(1)設(shè),依題意可得,所以,所以曲線E的方程為(2)依題意,可設(shè)直線l:,,,由,可得,則,,因為直線AC的斜率,直線BD的斜率,因為,所以,所以直線AC和BD的斜率之比為定值21、(1)1600,(平方米);(2)池底設(shè)計為邊長40米的正方形時總造價最低,最低造價為268800元.【解析】(1)根據(jù)題意,由于修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米可得底面積為1600,池壁面積s=.(2)同時池底每平方米的造價為150元,池壁每平方米的造價為120元設(shè)池底長方形長為x米,則可知總造價s=,x=40時,則.故可知當x=40時,則有可使得總造價最低,最低造價是268800元.考點:不等式求解最值點評:主要是考查了不等式求解最值的運用,屬于基礎(chǔ)題.22、(1)列聯(lián)表見解析,有99%的把握判斷監(jiān)管力度與食品質(zhì)量有關(guān)聯(lián);(2)X的分布列見解析,X的期望為【解析】(1)根據(jù)給定條件完善列聯(lián)表,再計算的觀測值并結(jié)合給定數(shù)據(jù)即可作答
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村水利基礎(chǔ)設(shè)施升級方案
- 鄉(xiāng)村綠色運輸體系建設(shè)方案
- 工地安全事故應(yīng)急響應(yīng)方案
- 儲備糧倉庫清潔生產(chǎn)技術(shù)方案
- 外墻防腐處理方案
- 熱力管道安裝檢測技術(shù)方案
- 排水管道施工技術(shù)培訓(xùn)方案
- 水電站功率因數(shù)補償方案
- 建筑項目竣工匯報方案
- 防腐蝕工程費用管控方案
- 2025年江西省高職單招文化統(tǒng)一考試真題及答案
- 2026天津津南國有資本投資運營集團有限公司及實控子公司招聘工作人員招聘11人備考題庫附參考答案詳解(能力提升)
- 風(fēng)的成因探秘與降水形成:基于模型的科學(xué)探究-八年級科學(xué)教學(xué)設(shè)計
- 醫(yī)院危險品管理培訓(xùn)制度
- 酒店宴會銷售部培訓(xùn)課件
- 2025年上海事業(yè)編考試歷年真題及答案
- 低壓送電制度規(guī)范
- (正式版)DB51∕T 3336-2025 《零散天然氣橇裝回收安全規(guī)范》
- 湖南省長沙市雅禮書院中學(xué)2026屆高三上數(shù)學(xué)期末檢測試題含解析
- 駕照科目一記憶口訣匯編
- 2026五個帶頭發(fā)言材料
評論
0/150
提交評論