lagrange插值分段線性插值matlab代碼_第1頁(yè)
lagrange插值分段線性插值matlab代碼_第2頁(yè)
lagrange插值分段線性插值matlab代碼_第3頁(yè)
lagrange插值分段線性插值matlab代碼_第4頁(yè)
lagrange插值分段線性插值matlab代碼_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Lagrange插值:

x=0:3;

y=[-5,-6z-l,16];

n=length(x);

symsq;

fork=l:n

fenmu=l;

p=l;

forj=11n

if(j-=k)

fenmu=fennu*(x(k)-x(j))

p=conv(pzpoly(x(j)))

end

end

c(k,:)=p*y(k)/fenmu

end

a=zeros(1,n);

fori-l:n

forj=1:n

a(i)=a(i)+c(j,i)

end

end

輸出結(jié)果:

fenmu=

-1

P=

1-1

fenmu=

2

P=

1-32

fenmu=

-6

P=

1-611-6

c=

0.8333-5.00009.1667-5.0000

fenmu=

1

P=

10

fenmu=

-1

p=

1-20

fenmu=

2

P=

1-560

c=

0.8333-5.00009.1667-5.0000

-3.000015.0000-18.00000

fenmu=

2

P=

10

fenmu=

2

P=

1-10

fenmu=

-2

P=

1-430

c=

0.8333-5.00009.1667-5.0000

-3.000015.0000-18.00000

0.5000-2.00001.50000

fenmu=

3

P=

10

fenmu=

6

P=

1-10

fenmu=

6

P=

1-320

c=

0.8333-5.00009.1667-5.0000

-3.000015.0000-18.00000

0.5000-2.00001.50000

2.6667-8.00005.33330

a=

0.8333000

a=

-2.1667000

a=

-1.6667000

a=

1000

a=

1-500

a=

11000

3=

1800

a=

1000

a=

1.000009.16670

a=

1.00000-8.83330

a=

1.00000-7.33330

a=

1.00000-2.00000

a=

1.00000-2.0000-5.0000

a=

1.00000-2.0000-5.0000

a=

1.00000-2.0000-5.0000

a=

1.00000-2.0000-5.0000

分段線性插值:

先保存M文件:

x=l:6;

y=[7168251224],

u=5.3;

delta=diff(y)./diff(x);

n=length(x);

forj=2:(n-1)

ifx(j)<u

k=j;

end

end

在commandwindow中輸入:

s=u-x(k);

v=y(k.)+s.*delta(k)

輸出結(jié)果:

v=

15.6000

3.4.Makeaplotofyoiirhand.Startwith

figure(position),get(0,'screensize'))

axes('position',[0Oil])

[x,y]=ginput;

Placeyourhandonthecomputerscreen.Usethemousetoselectafew

dozenpointsoutliningyourhand.Terminatetheginpurwithacarriage

return.Youmightfinditeasiertotraceyourhandonapieceofpaperand

thenputthepaperonthecomputerscreen.Youshouldl>eabletoseethe

ginputcursorthroughthepaper.(Savethesedata.Wewillrefertothemin

otherexerciseslaterinthisbook.)

Figure3.11.Ahand.

Nowthinkofxandyastwofunctionsofanindependentvariablethatgoes

fromonetothenumberofpointsjroucollected.Youcaninterpolateboth

functionsonafinergridandplottheresultwith

n=lengrh(x);

s=(1:n),;

z?(1:.05:n)1;

u=splinetx(s,x,t);

v=splinetx(s,y,t);

elfreset

plot(x,y,1',u,v,;

Dothesamethingwithpchiptx.Whichdoyouprefer?

Figure3.11istheplotofmyhand.Canyoutellifitwasdonewithsplinetx

orpchiptx?

解:

第一種做法,用spline,共55個(gè)點(diǎn),其中,54個(gè)有效

首先保存你一個(gè)M文件:

figure('position',get(0,'screensize'))

axcs('position,,[0011])

[x,y]=ginput;

然后在commandwindow里,輸入以下內(nèi)容:

n=length(x);

s=(l:n),;

t=(l:.O5:n),;

u=spline(s,x,t);

v=splinc(s,y,t);

elfreset

plot(x,y,'.',u,v,',);

對(duì)應(yīng)的x、y值:

0.35729170.2536145

0.35729170.2909639

0.35034720.3403614

0.34618060.4259036

0.34270830.5271084

0.32534720.6162651

0.30659720.6873494

0.2906250.7524096

0.28923610.7933735

0.29548610.796988

0.32256940.7548193

0.3406250.6849398

0.36909720.6150602

0.38645830.6126506

0.38993060.7259036

0.39270830.8066265

0.39201390.8993976

0.40243060.9295181

0.42395830.8933735

0.42395830.8078313

0.42951390.7343373

0.43159720.6451807

0.44409720.6439759

0.45659720.7439759

0.47048610.8451807

0.47673610.9054217

0.49618060.9463855

0.50868060.876506

0.50451390.818G747

0.50104170.7524096

0.48923610.6403614

0.5031250.6295181

0.50520830.6271084

0.53229170.7090361

0.55104170.763253

0.57395830.8355422

0.59618060.8572289

0.59479170.7837349

0.57534720.7090361

0.55798610.6391566

0.53576390.5668675

0.53229170.5283133

0.53506940.4789157

0.5656250.536747

0.59479170.5933735

0.62534720.610241

0.63229170.5728916

0.6156250.5331325

0.60034720.4993976

0.57881940.4415663

0.5593750.3716867

0.52951390.2957831

0.49756940.2403614

0.47118060.2018072

0.66076390.3090361

第二種做法,用pchip,共52個(gè)點(diǎn),全部有效

首先保存一個(gè)M文件:

figure('position',get(0,'screensize'))

axcs('position,,[0011])

[x,y]=ginput;

然后在commandwindow里,輸入以下內(nèi)容:

n=length(x);

s=(l:n),;

t=(l:.O5:n),;

u=pchip(s,x,t);

v=pchip(s,y,t);

elfreset

對(duì)應(yīng)的x、y值:

0.51909720.8487952

0.50520830.7512048

0.49479170.6789157

0.51006940.6692771

0.53993060.7355422

0.57534720.8174699

0.5968750.8620482

0.61909720.8777108

0.61493060.8138554

0.58784720.7427711

0.58784720.7427711

0.56354170.6716867

0.53506940.603012

0.5281250.563253

0.5281250.5259036

0.5656250.5801205

0.60520830.6271084

0.6343750.6186747

0.61909720.5716867

0.58784720.523494

0.53645830.4126506

0.49618060.3210843

0.4593750.2753012

我更喜歡第一種,用spline的,這個(gè)能將之間畫出弧度,而pchip更像是直接用線段將點(diǎn)依

次連接得到的。

使用的是splinetx。

3.9.TheM-filerungeinterp.mprovidesanexperimentwithafamouspolynomial

interpolationproblemduetoCarlRunge.Let

f3=TT—

an<lletPn(x)denotethepolynomialofdegreen—1thatinterpolatesf(x)at

nequallyspacedpointsontheinterval-1<i<1.Rmigeaskedwhether,

asnincreases.Pn(x)convergesto/(□").Theanswerisyesforsomei,but

noforothers.

(a)ForwhatxdocsPn(x)—*/(z)asn—?oo?

(b)Changethedistributionoftheinterpolationpointssothattheyarenot

equallyspaced.HDWdocsthisaffectconvergence?Canyoufindadistribution

sothatPn(x)—*f(x)foralla*intheinterval?

解:

首先保存一個(gè)M文件:

n=3;

xishu=2/(n-1);

x=-l:xishu:1;

y=l./(1+25.*x.*x);

fork=l:n

fenmu=l;

p=l;

forj=l:n

if(j~=k)

fenmu=fennu*(x(k)-x(j));

p=conv(p,poly(x(j)));

end

end

c(k,:)=p*y(k)/fenmu;

end

a=zeros(1,n);

fori=l:n

forj=l:n

a(i)=a(i)+c(j,i);

end

pnd

然后在commandwindow里輸入以卜內(nèi)容:

plot(x,y;*');

holdon;

plotfx^;*');

holdon;

xl=-l:0.01:l;

yi=o;

fori=l:n

yl=yl.*xl+a(i)

end

y2=l./(l+25.*xl.*xl);

plot(xl,yl/b');

holdon;

plot(xl,y2;g');

即有n=3時(shí),圖像:

n=10時(shí),圖像:

n=100時(shí),圖像:

n=1000時(shí),圖像:

可以看出,將卜1,1]做n?l等分的n個(gè)插值點(diǎn),在卜0.92,1)的區(qū)間內(nèi),隨著n趨近于8時(shí)P£x)

趨近于f(x)o

(b)

先保存M文件:

n=2;

x=2.*rand(n)-1

y=l./(1+25.*x.*x);

n=n八2;

%lagrangc?????i§

fork=l:n

fenmu=l;

p=l;

forj=1:n

if(j~=k)

fADTnu=fpnnn*(x(k)-x(j));

p=conv(p,poly(x(j)));

end

end

c(k,:)=p*y(k)/fenmu;

end

a=zeros(1,n);

fori=l:n

forj=l:n

a(i)-a(i)Ic(j,i);

end

end

輸出結(jié)果:

x=

0.9150-0.6848

0.92980.9412

然后在commandwindow里輸入:

plot(x,y;*');

holdon;

xl=-l:0.01:l;

yi=o;

fori=l:n

yl=yl.*xl+a(i)

end

y2=l./(l+25.*xl.*xl);

plot(xl,yl;b');

holdon;

plot(xlzy2/g');

得到以下幾幅圖:

igure1-X

Eil?Edit乂ievInsert工ooIsfiesktop{indovHdLp

"U)Q?、-、門S4.乂?Q□Id-□

1??<<IIII

*

0.075--

0.07--

0.066--

0.06--

0.055--

0.05--

0.045■%-

*

0.041----------1----------1----------1----------1----------1----------1----------1----------1----------

飛.8-0.6-04-020020.40.60.81

n=3時(shí),

0.4121-0.90770.3897

-0.9363-0.8057-0.3658

-0.44620.64690.9004

n=10時(shí),

x=

Columns1through7

-0.32100.9661-0.65780.71100.1660-0.7845-0.6425

0.9033-0.3971-0.93480.2895-0.49640.8126-0.1542

0.84070.40220.1224-0.2475-0.41910.7593-0.8115

-0.89460.33270.7637-0.61820.23420.63550.1970

0.47570.07830.3384-0.1435-0.4694-0.4785-0.0582

-0.46180.3962-0.6191-0.03600.64880.18870.3919

-0.15430.3331-0.2622-0.75880.9653-0.95500.3998

0.0957-0.6437-0.07850.17900.4605-0.14950.2771

0.8855-0.74400.9633-0.5476-0.3122-0.3746-0.9328

-0.16450.9982-0.6872-0.23080.1681-0.6770-0.8624

Columns8through10

-0.36080.22190.7507

0.06170.55760.0361

0.3089-0.15310.8872

-0.1848-0.81840.2754

0.6400-0.46710.9154

0.4367-0.6927-0.5186

0.9373-0.43800.3522

0.0627-0.1198-0.4219

-0.34970.05430.3436

-0.7887-0.08520.3903

n=10時(shí),數(shù)據(jù)太大,沒運(yùn)行出來。

可以看出,將卜1,1]做n-1等分的n個(gè)插值點(diǎn),在卜0.92,0.92]的區(qū)間內(nèi),隨著n趨近于8時(shí)P£x)

趨近于f(X)o

3.18.(a)Ifyouwanttointerpolatecensusdataontheinterval1900<t<2000

withapolynomial,

109

P(t)=cjt+c2rH-----bc10t4-cH,

youmightbetemptedtousetheVandermondematrixgeneratedby

t=1900:10:2000

V=vander(t)

Whyisthisareallybadidea?

(b)Investigatecenteringandscalingtheindependentvariable.Plotsome

data,pulldowntheToolsmenuonthefigurewindow,selectBasicFitting,

andfindthecheckboxaboutcenteringandscaling.Whatdoesthischeck

lx)xdo?

(c)Replacethevariabletwith

t-

s=-----”

a

ThisleadstoamodifiedpolynomialP(s).Howareitscoefficientsrelatedto

thoseof尸(£)?WhathappenstotheVandermondematrix?Whatvaluesof

〃andaleadtoareasonablywellcoiuiitionedVandernioiidematrix?One

possibilityis

mu-mean(t)

sigma=srd(r)

butaretherebettervalues?

解:

(a)

t=1900:10:2000

V=vander(t)

輸出結(jié)果:

t=

Columns1through6

190019101920193019401950

Columns7through11

19601970198019902000

V=

1.0e+033*

Columns1through7

0.61310.00030.00000.00000.00000.00000.0000

0.64620.00030.00000.00000.00000.00000.0000

0.68080.000

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論