江西省宜春市2026屆數(shù)學高二第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
江西省宜春市2026屆數(shù)學高二第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
江西省宜春市2026屆數(shù)學高二第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
江西省宜春市2026屆數(shù)學高二第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
江西省宜春市2026屆數(shù)學高二第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

江西省宜春市2026屆數(shù)學高二第一學期期末學業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若拋物線的準線方程是,則拋物線的標準方程是()A. B.C. D.2.已知等差數(shù)列的前n項和為,且,,則為()A. B.C. D.3.等比數(shù)列中,,,則()A. B.C. D.4.“,”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.6.命題“若,則”為真命題,那么不可能是()A. B.C. D.7.若實數(shù)滿足約束條件,則最小值為()A.-2 B.-1C.1 D.28.頂點在原點,關(guān)于軸對稱,并且經(jīng)過點的拋物線方程為()A. B.C. D.9.設圓:和圓:交于A,B兩點,則線段AB所在直線的方程為()A. B.C. D.10.函數(shù)的圖像大致是()A B.C. D.11.在空間直角坐標系中,已知點,,則線段的中點坐標與向量的模長分別是()A.;5 B.;C.; D.;12.已知實數(shù)a,b,c滿足,,則a,b,c的大小關(guān)系為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設Sn是數(shù)列{an}的前n項和,且a1=-1,an+1=SnSn+1,則Sn=__________.14.如圖,在四棱錐中,平面,底面為矩形,分別為的中點,連接,則點到平面的距離為__________.15.當為任意實數(shù)時,直線恒過定點,則以點C為圓心,半徑為圓的標準方程______16.已知,為橢圓C的焦點,點P在橢圓C上,,則的面積為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當時,已知是假命題,是真命題,求x的取值范圍.18.(12分)已知直線與雙曲線交于,兩點,為坐標原點(1)當時,求線段的長;(2)若以為直徑的圓經(jīng)過坐標原點,求的值19.(12分)已知公差不為零的等差數(shù)列的前項和為,,,成等比數(shù)列且滿足________.請在①;②;③,這三個條件中任選一個補充在上面題干中,并回答以下問題.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.20.(12分)已知命題p為“方程沒有實數(shù)根”,命題q為“”.(1)若p為真命題,求m的取值范圍;(2)若p和q有且只有一個為真命題,求m的取值范圍.21.(12分)在平面直角坐標系xOy中,拋物線:,點,過點的直線l與拋物線交于A,B兩點:當l與拋物線的對稱軸垂直時,(1)求拋物線的標準方程;(2)若點A在第一象限,記的面積為,的面積為,求的最小值22.(10分)已知橢圓()的左、右焦點為,,,離心率為(1)求橢圓的標準方程(2)的左頂點為,過右焦點的直線交橢圓于,兩點,記直線,,的斜率分別為,,,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)拋物線的準線方程,可直接得出拋物線的焦點,進而利用待定系數(shù)法求得拋物線的標準方程【詳解】準線方程為,則說明拋物線的焦點在軸的正半軸則其標準方程可設為:則準線方程為:解得:則拋物線的標準方程為:故選:D2、C【解析】直接由等差數(shù)列求和公式結(jié)合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.3、D【解析】設公比為,依題意得到方程,即可求出,再根據(jù)等比數(shù)列通項公式計算可得;【詳解】解:設公比為,因為,,所以,即,解得,所以;故選:D4、A【解析】由正切函數(shù)性質(zhì),應用定義法判斷條件間充分、必要關(guān)系.【詳解】當,,則,當時,,.∴“,”是“”的充分不必要條件.故選:A5、A【解析】利用空間向量的三角形法則可得,結(jié)合平行六面體的性質(zhì)分析解答【詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A6、D【解析】根據(jù)命題真假的判斷,對四個選項一一驗證即可.【詳解】對于A:若,則必成立;對于B:若,則必成立;對于C:若,則必成立;對于D:由不能得出,所以不可能是.故選:D7、B【解析】由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案【詳解】由約束條件作出可行域如圖,聯(lián)立,解得,由,得,由圖可知,當直線過時,直線在軸上的截距最小,有最小值為故選:B8、C【解析】根據(jù)題意,設拋物線的方程為,進而待定系數(shù)求解即可.【詳解】解:由題,設拋物線的方程為,因為在拋物線上,所以,解得,即所求拋物線方程為故選:C9、A【解析】將兩圓的方程相減,即可求兩圓相交弦所在直線的方程.【詳解】設,因為圓:①和圓:②交于A,B兩點所以由①-②得:,即,故坐標滿足方程,又過AB的直線唯一確定,即直線的方程為.故選:A10、B【解析】由函數(shù)有兩個零點排除選項A,C;再借助導數(shù)探討函數(shù)的單調(diào)性與極值情況即可判斷作答.【詳解】由得,或,選項A,C不滿足;由求導得,當或時,,當時,,于是得在和上都單調(diào)遞增,在上單調(diào)遞減,在處取極大值,在處取極小值,D不滿足,B滿足.故選:B11、B【解析】根據(jù)給定條件利用中點坐標公式及空間向量模長的坐標表示計算作答.【詳解】因點,,所以線段的中點坐標為,.故選:B12、A【解析】利用對數(shù)的性質(zhì)可得,,再構(gòu)造函數(shù),利用導數(shù)判斷,再構(gòu)造,利用導數(shù)判斷出函數(shù)的單調(diào)性,再由單調(diào)性即可求解.【詳解】由題意可得均大于,因為,所以,所以,且,令,,當時,,所以在單調(diào)遞增,所以,所以,即,令,,當時,,所以在上單調(diào)遞減,由,,所以,所以,綜上所述,.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、-.【解析】因為,所以,所以,即,又,即,所以數(shù)列是首項和公差都為的等差數(shù)列,所以,所以考點:數(shù)列的遞推關(guān)系式及等差數(shù)列的通項公式【方法點晴】本題主要考查了數(shù)列的通項公式、數(shù)列的遞推關(guān)系式的應用、等差數(shù)列的通項公式及其性質(zhì)定知識點的綜合應用,解答中得到,,確定數(shù)列是首項和公差都為的等差數(shù)列是解答的關(guān)鍵,著重考查了學生靈活變形能力和推理與論證能力,平時應注意方法的積累與總結(jié),屬于中檔試題14、【解析】利用轉(zhuǎn)化法,根據(jù)線面平行的性質(zhì),結(jié)合三棱錐的體積等積性進行求解即可.【詳解】設是的中點,連接,因為是的中點,所以,因為平面,平面,所以平面,因此點到平面的距離等于點到平面的距離,設為,因為平面,所以,,于是有,底面為矩形,所以有,,因為平面,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因為,所以,故答案為:15、【解析】先求得直線過的定點C,再寫出圓的標準方程.【詳解】直線可化為,則,解得,所以直線恒過定點,所以以點C為圓心,半徑為圓的標準方程是,故答案為:16、##【解析】設,然后根據(jù)橢圓的定義和余弦定理列方程組可求出,再由三角形的面積公式可求得結(jié)果【詳解】由,得,則,設,則,在中,,由余弦定理得,,所以,所以,所以,所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)解不等式組即得解;(2)由題得p、q一真一假,分兩種情況討論得解.【小問1詳解】解:由題意知p是q的充分條件,即p集合包含于q集合,有;【小問2詳解】解:當時,有,由題意知,p、q一真一假,當p真q假時,,當p假q真時,,綜上,x的取值范圍為18、(1)(2)【解析】(1)聯(lián)立直線方程和雙曲線方程,利用弦長公式可求弦長.(2)根據(jù)圓過原點可得,設,從而,聯(lián)立直線方程和雙曲線方程后利用韋達定理化簡前者可得所求的參數(shù)的值.【小問1詳解】當時,直線,設,由可得,此時,故.【小問2詳解】設,因為以為直徑的圓經(jīng)過坐標原點,故,故,由可得,故且,故.而可化為即,因為,所以,解得,結(jié)合其范圍可得.19、(1)答案見解析(2)【解析】(1)首先由,,成等比數(shù)列,求出,再由①或②或③求出數(shù)列的首項和公差,即可求得的通項公式;(2)求得的通項公式,結(jié)合裂項相消法求得.【小問1詳解】設等差數(shù)列的公差為,由,,成等比數(shù)列,可得,即,∵,故,選①:由,可得,解得,所以數(shù)列的通項公式為選②:由,可得,即,所以,解得,所以;選③:由,可得,即,所以,解得,所以;【小問2詳解】由(1)可得,所以.20、(1)(2)【解析】(1)方程無根,利用根的判別式小于0求出m的取值范圍;(2)和有且只有一個為真命題,分兩種情況進行求解,最終求出結(jié)果.【小問1詳解】由方程沒有實數(shù)根,得,解得:.所以m的取值范圍為.【小問2詳解】和有且只有一個為真命題,分為下列兩種情況:①當真且假時,且,得;②當假且真時,且,得.所以,的取值范圍為.21、(1).(2)8.【解析】(1)將點代入拋物線方程可解得基本量.(2)設直線AB為,代入聯(lián)立得關(guān)于的一元二次方程,運用韋達定理,得到關(guān)于的函數(shù)關(guān)系,再求函數(shù)最值.【小問1詳解】當l與拋物線的對稱軸垂直時,,,則代入拋物線方程得,所以拋物線方程是【小問2詳解】設點,,直線AB方程為,聯(lián)立拋物線整理得:,,∴,,有,由A在第一象限,則,即,∴,可得,又O到AB的距離,∴,而,∴,,當,,單調(diào)遞減;,,單調(diào)遞增;∴的最小值為,此時,.22、(1);(2)證明見解析【解析】(1)由可求出,結(jié)合離心率可知,進而可求出,即可求出標準方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論