版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省大理市下關(guān)第一中學2025-2026學年高一上數(shù)學期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某幾何體的三視圖如圖所示,數(shù)量單位為cm,它的體積是()A. B.C. D.2.已知,,,則下列關(guān)系中正確的是A. B.C. D.3.集合的真子集的個數(shù)是()A. B.C. D.4.要得到的圖象,需要將函數(shù)的圖象A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位5.若函數(shù)的圖象上存在一點滿足,且,則稱函數(shù)為“可相反函數(shù)”,在①;②;③;④中,為“可相反函數(shù)”的全部序號是()A.①② B.②③C.①③④ D.②③④6.某市中心城區(qū)居民生活用水階梯設置為三檔,采用邊際用水量確定分檔水量為:第一檔水量為240立方米/戶年及以下部分;第二檔水量為240立方米/戶年以上至360立方米/戶年部分(含360立方米/戶年);第三檔水量為360立方米/戶年以上部分.家庭常住人口在4人(不含4人)以上的多人口戶,憑戶口簿,其水量按每增加一人各檔水量遞增50立方米/年確定.第一檔用水價格為2.1元/立方米;第二檔用水價格為3.2元/立方米;第三檔用水價格為6.3元/立方米.小明家中共有6口人,去年整年用水花費了1602元,則小明家去年整年的用水量為().A.474立方米 B.482立方米C.520立方米 D.540立方米7.將函數(shù)圖象向右平移個單位得到函數(shù)的圖象,已知的圖象關(guān)于原點對稱,則的最小正值為()A.2 B.3C.4 D.68.計算器是如何計算,,,,等函數(shù)值的?計算器使用的是數(shù)值計算法,其中一種方法是用容易計算的多項式近似地表示這些函數(shù),通過計算多項式的值求出原函數(shù)的值,如,,,其中.英國數(shù)學家泰勒(B.Taylor,1685-1731)發(fā)現(xiàn)了這些公式,可以看出,右邊的項用得越多,計算得出的和的值也就越精確.運用上述思想,可得到的近似值為()A.0.50 B.0.52C.0.54 D.0.569.設a=,b=,c=,則a,b,c的大小關(guān)系是()A. B.C. D.10.如圖,向量,,的起點與終點均在正方形網(wǎng)格的格點上,則向量用基底,表示為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.圓在點P(1,)處的切線方程為_____12.函數(shù),若為偶函數(shù),則最小的正數(shù)的值為______13.已知,求________14.下列說法中,所有正確說法的序號是_____終邊落在軸上的角的集合是;
函數(shù)圖象與軸的一個交點是;函數(shù)在第一象限是增函數(shù);若,則15.若,則____16.已知,則的最大值為_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若函數(shù)的定義域和值域均為,求實數(shù)的值;(2)若在區(qū)間上是減函數(shù),且對任意的,總有,求實數(shù)的取值范圍.(可能用到的不等關(guān)系參考:若,且,則有)18.是否存在銳角,使得:,同時成立?若存在,求出銳角的值;若不存在,說明理由.19.某水果經(jīng)銷商決定在八月份(30天計算)銷售一種時令水果.在這30天內(nèi),日銷售量h(斤)與時間t(天)滿足一次函數(shù)h=t+2,每斤水果的日銷售價格l(元)與時間t(天)滿足如圖所示的對應關(guān)系.(Ⅰ)根據(jù)提供的圖象,求出每斤水果的日銷售價格l(元)與時間t(天)所滿足的函數(shù)關(guān)系式;(Ⅱ)設y(元)表示銷售水果的日收入(日收入=日銷售量×日銷售價格),寫出y與t的函數(shù)關(guān)系式,并求這30天中第幾天日收入最大,最大值為多少元?20.設函數(shù)f(x)=(x>0)(1)作出函數(shù)f(x)的圖象;(2)當0<a<b,且f(a)=f(b)時,求+的值;(3)若方程f(x)=m有兩個不相等的正根,求m的取值范圍21.已知函數(shù)(1)若,成立,求實數(shù)的取值范圍;(2)證明:有且只有一個零點,且
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由三視圖可知,此幾何體為直角梯形的四棱錐,根據(jù)四棱錐的體積公式即可求出結(jié)果.【詳解】由三視圖復原幾何體為四棱錐,如圖:它高為,底面是直角梯形,長底邊為,上底為,高為,棱錐的高垂直底面梯形的高的中點,所以幾何體的體積為:故選:C【點睛】本題考查了由三視圖求幾何體的體積,解答此類問題的關(guān)鍵是判斷幾何體的形狀以及幾何尺寸,同時需熟記錐體的體積公式,屬于基礎題.2、C【解析】利用函數(shù)的單調(diào)性、正切函數(shù)的值域即可得出【詳解】,,∴,又∴,則下列關(guān)系中正確的是:故選C【點睛】本題考查了指對函數(shù)的單調(diào)性、三角函數(shù)的單調(diào)性的應用,屬于基礎題3、B【解析】確定集合的元素個數(shù),利用集合真子集個數(shù)公式可求得結(jié)果.【詳解】集合的元素個數(shù)為,故集合的真子集個數(shù)為.故選:B.4、D【解析】由“左加右減上加下減”的原則可確定函數(shù)到的路線,進行平移變換,推出結(jié)果【詳解】解:將函數(shù)向右平移個單位,即可得到的圖象,即的圖象;故選:【點睛】本題主要考查三角函數(shù)的平移.三角函數(shù)的平移原則為“左加右減上加下減”.注意的系數(shù),屬于基礎題5、D【解析】根據(jù)已知條件把問題轉(zhuǎn)化為函數(shù)與直線有不在坐標原點的交點,結(jié)合圖象即可得到結(jié)論.【詳解】解:由定義可得函數(shù)為“可相反函數(shù)”,即函數(shù)與直線有不在坐標原點的交點①的圖象與直線有交點,但是交點在坐標原點,所以不是“可相反函數(shù)”;②的圖象與直線有交點在第四象限,且交點不在坐標原點,所以是“可相反函數(shù)”;③與直線有交點在第二象限,且交點不在坐標原點,所以是“可相反函數(shù)”;④的圖象與直線有交點在第四象限,且交點不在坐標原點,所以是“可相反函數(shù)”.結(jié)合圖象可得:只有②③④符合要求;故選:D6、D【解析】根據(jù)題意,建立水費與用水量的函數(shù)關(guān)系式,即可求解.【詳解】設小明家去年整年用水量為x,水費為y.若時,則;若時,則;若時,則.令,解得:故選:D7、B【解析】根據(jù)圖象平移求出g(x)解析式,g(x)為奇函數(shù),則g(0)=0,據(jù)此即可計算ω的取值.【詳解】根據(jù)已知,可得,∵的圖象關(guān)于原點對稱,所以,從而,Z,所以,其最小正值為3,此時故選:B8、C【解析】根據(jù)新定義,直接計算取近似值即可.【詳解】由題意,故選:C9、C【解析】根據(jù)指數(shù)和冪函數(shù)的單調(diào)性比較大小即可.【詳解】因為在上單調(diào)遞增,在上單調(diào)遞減所以,故.故選:C10、C【解析】由題設有,所以,選C.二、填空題:本大題共6小題,每小題5分,共30分。11、x-y+2=0【解析】圓,點在圓上,∴其切線方程為,整理得:12、【解析】根據(jù)三角函數(shù)的奇偶性知應可用誘導公式化為余弦函數(shù)【詳解】,其為偶函數(shù),則,,,其中最小的正數(shù)為故答案【點睛】本題考查三角函數(shù)的奇偶性,解題時直接利用誘導公式分析即可13、【解析】由條件利用同角三角函數(shù)的基本關(guān)系求得和的值,再利用兩角和差的三角公式求得的值【詳解】∵,∴,,,∴,∴故答案為:14、【解析】取值驗證可判斷;直接驗證可判斷;根據(jù)第一象限的概念可判斷;由誘導公式化簡可判斷.【詳解】中,取時,的終邊在x軸上,故錯誤;中,當時,,故正確;中,第一象限角的集合為,顯然在該范圍內(nèi)函數(shù)不單調(diào);中,因為,所以,所以,故正確.故答案為:②④15、##0.25【解析】運用同角三角函數(shù)商數(shù)關(guān)系式,把弦化切代入即可求解.【詳解】,故答案為:.16、【解析】消元,轉(zhuǎn)化為求二次函數(shù)在閉區(qū)間上的最值【詳解】,,時,取到最大值,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)2;(2).【解析】(1)確定函數(shù)的對稱軸,從而可得函數(shù)的單調(diào)性,利用的定義域和值域均是,建立方程,即可求實數(shù)的值;(2)由函數(shù)的單調(diào)性得出在單調(diào)遞減,在單調(diào)遞增,從而求出在上的最大值和最小值,進而求出實數(shù)的取值范圍.【小問1詳解】易知的對稱軸為直線,故在上為減函數(shù),∴在上單調(diào)遞減,即,,代入解得或(舍去).故實數(shù)的值為2.【小問2詳解】∵在是減函數(shù),∴.∴在上單調(diào)遞減,在上單調(diào)遞增,又函數(shù)的對稱軸為直線,∴,,又,∴.∵對任意的,總有,∴,即,解得,又,∴,即實數(shù)的取值范圍為.18、存在,【解析】利用兩角和的正切公式可得,結(jié)合可求及,求出后可得的值.【詳解】假設存在銳角使得,同時成立.得,所以.又因為,所以.因此可以看成是方程的兩個根.解該方程得.若,則.這與為銳角矛盾.所以,故,因為為銳角,所以.所以滿足條件的存在,且.【點睛】三角方程的求解的基本方法是消元法,也可以利用三角變換公式把三角方程化簡為角的三角函數(shù)的方程,求出它們的值后可得角的大小,化簡三角方程時要關(guān)注三角方程的結(jié)構(gòu)形式便于找到合理的三角變換方法.19、(I);(II)見解析.【解析】(Ⅰ)利用已知條件列出時間段上的函數(shù)的解析式即可.(Ⅱ)利用分段函數(shù)的解析式求解函數(shù)的最值即可【詳解】解:(Ⅰ)當0<t≤10,l=30,當10<t≤30時,設函數(shù)關(guān)系式為l(t)=kt+b,則,解得k=-1,b=40,∴l(xiāng)(t)=-t+40,∴每斤水果的日銷售價格l(元)與時間t(天)所滿足的函數(shù)關(guān)系式l(t)=,(Ⅱ)當0≤t≤10,y=30(t+2)=15t+60,當10<t≤30時,y=(t+2)(-t+40)=-t2+18t+80∴y=,當0≤t≤10,y=15t+60為增函數(shù),則ymax=210,當10<t≤30時,y=-t2+18t+80=-(t-18)2+242,當t=18時,ymax=242,綜上所述,第18天日收入最大,最大值為242元【點睛】本題考查分段函數(shù)的應用,實際問題的處理方法,考查分析問題解決問題的能力.20、(1)見解析;(2)2;(3)見解析.【解析】(1)將函數(shù)寫成分段函數(shù),先作出函,再將x軸下方部分翻折到軸上方即可得到函數(shù)圖象;(2)根據(jù)函數(shù)的圖象,可知在上是減函數(shù),而在上是增函數(shù),利用b且,即可求得的值;(3)構(gòu)造函數(shù),由函數(shù)的圖象可得結(jié)論【詳解】(1)如圖所示(2)∵f(x)==故f(x)在(0,1]上是減函數(shù),而在(1,+∞)上是增函數(shù)由0<a<b且f(a)=f(b),得0<a<1<b,且-1=1-,∴+=2.(3)由函數(shù)f(x)的圖象可知,當0<m<1時,函數(shù)f(x)的圖象與直線y=m有兩個不同的交點,即方程f(x)=m有兩個不相等的正根.【點睛】本題考查絕對值函數(shù),考查數(shù)形結(jié)合的數(shù)學思想,考查學生的作圖能力,正確作圖是關(guān)鍵21、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- cpvc焊接施工方案(3篇)
- 施工項目成本管理制度
- 景區(qū)導游服務規(guī)范制度
- 2026內(nèi)蒙古鄂爾多斯東勝區(qū)祥和小學招聘教師備考題庫及答案詳解(考點梳理)
- 罕見間質(zhì)性肺病的抗纖維化治療策略-1
- 罕見腫瘤的個體化治療藥物相互作用管理策略與決策-1
- 2026江蘇護理職業(yè)學院招聘24人備考題庫及答案詳解(奪冠系列)
- 2026中共昆明市委黨校引進高層次人才招聘3人備考題庫(云南)參考答案詳解
- 2026上半年云南事業(yè)單位聯(lián)考民族中學招聘2人備考題庫及一套參考答案詳解
- 2026上海市姚連生中學招聘教師備考題庫及參考答案詳解1套
- 成體館加盟協(xié)議書范文范本集
- DB34T 4506-2023 通督調(diào)神針刺療法應用指南
- 02-輸電線路各階段設計深度要求
- 《認識時鐘》大班數(shù)學教案
- T-CI 178-2023 高大邊坡穩(wěn)定安全智能監(jiān)測預警技術(shù)規(guī)范
- THHPA 001-2024 盆底康復管理質(zhì)量評價指標體系
- 傷口的美容縫合減少瘢痕的形成
- MSOP(測量標準作業(yè)規(guī)范)測量SOP
- 顱鼻眶溝通惡性腫瘤的治療及護理
- 人教版四年級《上冊語文》期末試卷(附答案)
- 四川山體滑坡地質(zhì)勘察報告
評論
0/150
提交評論