版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
【中考數(shù)學】易錯易錯壓軸選擇題精選:勾股定理選擇題訓練經(jīng)典題目(含答案)一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.圖中不能證明勾股定理的是()A. B. C. D.2.在平面直角坐標系中,已知平行四邊形ABCD的點A(0,﹣2)、點B(3m,4m+1)(m≠﹣1),點C(6,2),則對角線BD的最小值是()A.3 B.2 C.5 D.63.如圖,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結DH、BE與相交于點G,以下結論中正確的結論有()(1)△ABC是等腰三角形;(2)BF=AC;(3)BH:BD:BC=1::;(4)GE2+CE2=BG2.A.1個 B.2個 C.3個 D.4個4.如圖,已知圓柱的底面直徑,高,小蟲在圓柱側面爬行,從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為()A.18 B.48 C.120 D.725.如圖,已知,點在邊上,,點是邊上一個動點,若周長的最小值是6,則的長是()A. B. C. D.16.如圖,在△ABC中,∠C=90°,AD是△ABC的一條角平分線.若AC=6,AB=10,則點D到AB邊的距離為()A.2 B.2.5 C.3 D.47.如圖,在中,,的平分線與邊相交于點,,垂足為,若的周長為6,則的面積為().A.36 B.18 C.12 D.98.如圖,透明的圓柱形玻璃容器(容器厚度忽略不計)的高為12cm,在容器內壁離容器底部4cm的點B處有一滴蜂蜜,此時一只螞蟻正好在容器外壁,且離容器上沿4cm的點A處,若螞蟻吃到蜂蜜需爬行的最短路徑為15cm,則該圓柱底面周長為()cm.A.9 B.10 C.18 D.209.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為()A.42 B.32 C.42或32 D.37或3310.如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上,BD=6,DC=2,點P是AB上的動點,則PC+PD的最小值為()A.8 B.10 C.12 D.1411.“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數(shù)學的驕傲,如圖所示的“趙爽弦圖”是由三角形較長直角邊長為a,較短直角邊長為b,若(a+b)2=21,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.612.如圖,長方體的長為15cm,寬為10cm,高為20cm,點B離點C5cm,一只螞蟻如果要沿著長方體的表面從點A爬到點B去吃一滴蜜糖,需要爬行的最短距離是()cm.A.25 B.20 C.24 D.1013.如圖:在△ABC中,∠B=45°,D是AB邊上一點,連接CD,過A作AF⊥CD交CD于G,交BC于點F.已知AC=CD,CG=3,DG=1,則下列結論正確的是()①∠ACD=2∠FAB②③④AC=AFA.①②③ B.①②③④ C.②③④ D.①③④14.如圖是我國數(shù)學家趙爽的股弦圖,它由四個全等的直角三角形和小正方形拼成的一個大正方形.已知大正方形的面積是l3,小正方形的面積是1,直角三角形的較短直角邊長為a,較長直角邊長為b,那么值為()A.25 B.9 C.13 D.16915.在下列以線段a、b、c的長為邊,能構成直角三角形的是()A.a(chǎn)=3,b=4,c=6 B.a(chǎn)=5,b=6,c=7 C.a(chǎn)=6,b=8,c=9 D.a(chǎn)=7,b=24,c=2516.下列各組線段能構成直角三角形的一組是()A. B. C. D.17.如圖,西安路與南京路平行,并且與八一街垂直,曙光路與環(huán)城路垂直.如果小明站在南京路與八一街的交叉口,準備去書店,按圖中的街道行走,最近的路程約為()A. B. C. D.18.如圖是甲、乙兩張不同的矩形紙片,將它們分別沿著虛線剪開后,各自要拼一個與原來面積相等的正方形,則()A.甲、乙都可以 B.甲、乙都不可以C.甲不可以、乙可以 D.甲可以、乙不可以19.如圖,已知AB是線段MN上的兩點,MN=12,MA=3,MB>3,以A為中心順時針旋轉點M,以點B為中心順時針旋轉點N,使M、N兩點重合成一點C,構成△ABC,當△ABC為直角三角形時AB的長是()A.3 B.5 C.4或5 D.3或5120.如圖,西安路與南京路平行,并且與八一街垂直,曙光路與環(huán)城路垂直.如果小明站在南京路與八一街的交叉口,準備去書店,按圖中的街道行走,最近的路程約為()A.600m B.500mC.400m D.300m21.已知一個三角形的兩邊長分別是5和13,要使這個三角形是直角三角形,則這個三角形的第三條邊可以是()A.6 B.8 C.10 D.1222.我國古代數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的三角形,如圖所示,已知∠A=90°,BD=4,CF=6,設正方形ADOF的邊長為,則()A.12 B.16 C.20 D.2423.如圖,正方體的棱長為4cm,A是正方體的一個頂點,B是側面正方形對角線的交點.一只螞蟻在正方體的表面上爬行,從點A爬到點B的最短路徑是()A.9 B. C. D.1224.下列四組線段中,可以構成直角三角形的是()A.1、、 B.2、3、4 C.1、2、3 D.4、5、625.如圖,點和點在數(shù)軸上對應的數(shù)分別是4和2,分別以點和點為圓心,線段的長度為半徑畫弧,在數(shù)軸的上方交于點.再以原點為圓心,為半徑畫弧,與數(shù)軸的正半軸交于點,則點對應的數(shù)為()A.3.5 B. C. D.26.如圖,△ABC中,AB=AC,AD是∠BAC的平分線.已知AB=5,AD=3,則BC的長為()A.5 B.6 C.8 D.1027.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別是點D、E,AD=3,BE=1,則BC的長是()A. B.2 C. D.28.已知,等邊三角形ΔABC中,邊長為2,則面積為()A.1 B.2 C. D.29.如圖,中,有一點在上移動.若,則的最小值為()A.8 B.8.8 C.9.8 D.1030.如圖,是我國古代著名的“趙爽弦圖”的示意圖,此圖是由四個全等的直角三角形拼接而成,其中AE=10,BE=24,則EF的長是()A.14 B.13 C.14 D.14【參考答案】***試卷處理標記,請不要刪除一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.A解析:A【分析】根據(jù)各個圖象,利用面積的不同表示方法,列式證明結論,找出不能證明的那個選項.【詳解】解:A選項不能證明勾股定理;B選項,通過大正方形面積的不同表示方法,可以列式,可得;C選項,通過梯形的面積的不同表示方法,可以列式,可得;D選項,通過這個不規(guī)則圖象的面積的不同表示方法,可以列式,可得.故選:A.【點睛】本題考查勾股定理的證明,解題的關鍵是掌握勾股定理的證明方法.2.D解析:D【分析】先根據(jù)B(3m,4m+1),可知B在直線y=x+1上,所以當BD⊥直線y=x+1時,BD最小,找一等量關系列關于m的方程,作輔助線:過B作BH⊥x軸于H,則BH=4m+1,利用三角形相似得BH2=EH?FH,列等式求m的值,得BD的長即可.【詳解】解:如圖,∵點B(3m,4m+1),∴令,∴y=x+1,∴B在直線y=x+1上,∴當BD⊥直線y=x+1時,BD最小,過B作BH⊥x軸于H,則BH=4m+1,∵BE在直線y=x+1上,且點E在x軸上,∴E(?,0),G(0,1)∵F是AC的中點∵A(0,?2),點C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH?FH,∴(4m+1)2=(3m+)(3?3m)解得:m1=?(舍),m2=,∴B(,),∴BD=2BF=2×=6,則對角線BD的最小值是6;故選:D.【點睛】本題考查了平行四邊形的性質,利用待定系數(shù)法求一次函數(shù)的解析式,三角形相似的判定,圓形與坐標特點,勾股定理等知識點.本題利用點B的坐標確定其所在的直線的解析式是關鍵.3.C解析:C【分析】(1)根據(jù)角平分線的定義可得∠ABE=∠CBE,根據(jù)等角的余角相等求出∠A=∠BCA,再根據(jù)等角對等邊可得AB=BC,從而得證;(2)根據(jù)三角形的內角和定理求出∠A=∠DFB,推出BD=DC,根據(jù)AAS證出△BDF≌△CDA即可;(3)根據(jù)等腰直角三角形斜邊上的中線等于斜邊的一半進行解答;(4)由(2)得出BF=AC,再由BF平分∠DBC和BE⊥AC通過ASA證得△ABE≌△CBE,即得CE=AE=AC,連接CG,由H是BC邊的中點和等腰直角三角形△DBC得出BG=CG,再由直角△CEG得出CG2=CE2+GE2,從而得出CE,GE,BG的關系.【詳解】解:(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵CD⊥AB,∴∠ABE+∠A=90°,∠CBE+∠ACB=90°,∴∠A=∠BCA,∴AB=BC,∴△ABC是等腰三角形;故(1)正確;(2)∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∴△BDF≌△CDA(AAS),∴BF=AC;故(2)正確;(3)∵在△BCD中,∠CDB=90°,∠DBC=45°,∴∠DCB=45°,∴BD=CD,BC=BD.由點H是BC的中點,∴DH=BH=CH=BC,∴BD=BH,∴BH:BD:BC=BH:BH:2BH=1::2.故(3)錯誤;(4)由(2)知:BF=AC,∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE⊥AC,∴∠AEB=∠CEB,在△ABE與△CBE中,,∴△ABE≌△CBE(AAS),∴CE=AE=AC,∴CE=AC=BF;連接CG.∵BD=CD,H是BC邊的中點,∴DH是BC的中垂線,∴BG=CG,在Rt△CGE中有:CG2=CE2+GE2,∴CE2+GE2=BG2.故(4)正確.綜上所述,正確的結論由3個.故選C.【點睛】本題考查全等三角形的判定與性質,等腰直角三角形的判定與性質,直角三角形斜邊上的中線等于斜邊的一半的性質,平行線的性質,勾股定理,熟練掌握三角形全等的判定方法并作輔助線構造出全等三角形是解題的關鍵.4.D解析:D【分析】要求最短路徑,首先要把圓柱的側面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側面展開,展開圖如圖所示,點,的最短距離為線段的長.∵已知圓柱的底面直徑,∴,在中,,,∴,∴從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為.故選D.【點睛】本題考查了平面展開-最短路徑問題,解題的關鍵是會將圓柱的側面展開,并利用勾股定理解答.5.D解析:D【分析】作點A關于OM的對稱點E,AE交OM于點D,連接BE、OE,BE交OM于點C,此時△ABC周長最小,根據(jù)題意及作圖可得出△OAD是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,從而證明△BOE是直角三角形,然后設AB=x,則OB=3+x,根據(jù)周長最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【詳解】解:作點A關于OM的對稱點E,AE交OM于點D,連接BE、OE,BE交OM于點C,此時△ABC周長最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周長的最小值是6,∴AB+BE=6,∵∠MON=45°,AD⊥OM,∴△OAD是等腰直角三角形,∠OAD=45°,由作圖可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE是直角三角形,設AB=x,則OB=3+x,BE=6-x,在Rt△OBE中,,解得:x=1,∴AB=1.故選D.【點睛】本題考查了利用軸對稱求最值,等腰直角三角形的判定與性質,勾股定理,熟練掌握作圖技巧,正確利用勾股定理建立出方程是解題的關鍵.6.C解析:C【分析】作DE⊥AB于E,由勾股定理計算出可求BC=8,再利用角平分線的性質得到DE=DC,設DE=DC=x,利用等等面積法列方程、解方程即可解答.【詳解】解:作DE⊥AB于E,如圖,在Rt△ABC中,BC==8,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=6(8﹣x),解得x=3,即點D到AB邊的距離為3.故答案為C.【點睛】本題考查了角平分線的性質和勾股定理的相關知識,理解角的平分線上的點到角的兩邊的距離相等是解答本題的關鍵..7.D解析:D【分析】利用角平分定理得到DE=AD,根據(jù)三角形內角和得到∠BDE=∠BDA,再利用角平分線定理得到BE=AB=AC,根據(jù)的周長為6求出AB=6,再根據(jù)勾股定理求出,即可求得的面積.【詳解】∵,∴AB⊥AD,∵,平分,∴DE=AD,∠BED=,∴∠BDE=∠BDA,∴BE=AB=AC,∵的周長為6,∴DE+CD+CE=AC+CE=BC=6,∵∴,∴,,∴的面積=,故選:D.【點睛】此題考查角平分線定理的運用,勾股定理求邊長,在利用角平分線定理時必須是兩個垂直一個平分同時運用,得到到角兩邊的距離相等的結論.8.C解析:C【分析】將容器側面展開,建立A關于上邊沿的對稱點A’,根據(jù)兩點之間線段最短可知A’B的長度為最短路徑15,構造直角三角形,依據(jù)勾股定理可以求出底面周長的一半,乘以2即為所求.【詳解】解:如圖,將容器側面展開,作A關于EF的對稱點,連接,則即為最短距離,根據(jù)題意:,,.所以底面圓的周長為9×2=18cm.故選:C.【點睛】本題考查了平面展開——最短路徑問題,將圖形展開,利用軸對稱的性質和勾股定理進行計算是解題的關鍵.9.C解析:C【分析】存在2種情況,△ABC是銳角三角形和鈍角三角形時,高AD分別在△ABC的內部和外部【詳解】情況一:如下圖,△ABC是銳角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周長為:15+12+9+5=42情況二:如下圖,△ABC是鈍角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周長為:15+13+4=32故選:C【點睛】本題考查勾股定理,解題關鍵是多解,注意當幾何題型題干未提供圖形時,往往存在多解情況.10.B解析:B【分析】過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時DP+CP=DP+PC′=DC′的值最?。蒁C=2,BD=6,得到BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根據(jù)勾股定理即可得到結論.【詳解】解:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最?。逥C=2,BD=6,∴BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=8,根據(jù)勾股定理可得DC′=.故選:B.【點睛】此題考查了軸對稱﹣線路最短的問題,確定動點P為何位置時PC+PD的值最小是解題的關鍵.11.C解析:C【分析】觀察圖形可知,小正方形的面積=大正方形的面積-4個直角三角形的面積,利用已知=21,大正方形的面積為13,可以得以直角三角形的面積,進而求出答案?!驹斀狻坑捎诖笳叫蔚倪呴L為,又大正方形的面積為13,即,而小正方形的面積表達式為,而小正方形的面積表達式為故本題正確答案為C.【點睛】本題主要考查直角三角形,用到勾股定理的證明,正確計算是解題的關鍵.12.A解析:A【分析】分三種情況討論:把左側面展開到水平面上,連結AB;把右側面展開到正面上,連結AB,;把向上的面展開到正面上,連結AB;然后利用勾股定理分別計算各情況下的AB,再進行大小比較.【詳解】把左側面展開到水平面上,連結AB,如圖1把右側面展開到正面上,連結AB,如圖2把向上的面展開到正面上,連結AB,如圖3∵∴∴需要爬行的最短距離為25cm故選:A.【點睛】本題考查了平面展開及其最短路徑問題:先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點之間的最短路徑.一般情況是兩點之間,線段最短.在平面圖形上構造直角三角形解決問題.13.B解析:B【分析】過點C作于點H,根據(jù)等腰三角形的性質得到,根據(jù)得到,可以證得①是正確的,利用勾股定理求出AG的長,算出三角形ACD的面積證明②是正確的,再根據(jù)角度之間的關系證明,得到④是正確的,最后利用勾股定理求出CF的長,得到③是正確的.【詳解】解:如圖,過點C作于點H,∵,∴,,∵,∴,∴,∴,故①正確;∵,,∴,∴,在中,,∴,故②正確;∵,,∴,∵,,∴,∵,,,∴,∴,故④正確;∴,在中,,故③正確.故選:B.【點睛】本題考查幾何的綜合證明,解題的關鍵是掌握等腰三角形的性質和判定,勾股定理和三角形的外角和定理.14.A解析:A【分析】根據(jù)勾股定理可以求得等于大正方形的面積,然后求四個直角三角形的面積,即可得到的值,然后根據(jù)即可求解.【詳解】根據(jù)勾股定理可得,四個直角三角形的面積是:,即,則.故選:A.【點睛】本題考查了勾股定理以及完全平方式,正確根據(jù)圖形的關系求得和的值是關鍵.15.D解析:D【解析】A選項:32+42≠62,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;B選項:52+62≠72,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;C選項:62+82≠92,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;D選項:72+242=252,故符合勾股定理的逆定理,能組成直角三角形,故正確.故選D.16.C解析:C【分析】根據(jù)勾股定理的逆定理解答即可.【詳解】A、∵,∴該選項的三條線段不能構成直角三角形;B、∵,∴該選項的三條線段不能構成直角三角形;C、∵,∴該選項的三條線段能構成直角三角形;D、∵,∴該選項的三條線段不能構成直角三角形;故選:C.【點睛】此題考查勾股定理的逆定理,掌握勾股定理的逆定理的計算法則及正確計算是解題的關鍵.17.D解析:D【分析】由于BC∥AD,那么有∠DAE=∠ACB,由題意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可證△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根據(jù)圖可知從B到E的走法有兩種,分別計算比較即可.【詳解】解:如圖所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC=∴CE=AC-AE=200,從B到E有兩種走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故選D.【點睛】本題考查了平行線的性質、全等三角形的判定和性質、勾股定理.解題的關鍵是證明△ABC≌△DEA,并能比較從B到E有兩種走法.18.A解析:A【解析】試題分析:剪拼如下圖:乙故選A考點:剪拼,面積不變性,二次方根19.C解析:C【分析】設AB=x,則BC=9-x,根據(jù)三角形兩邊之和大于第三邊,得到x的取值范圍,再利用分類討論思想,根據(jù)勾股定理列方程,計算解答.【詳解】解:∵在△ABC中,AC=AM=3,設AB=x,BC=9-x,由三角形兩邊之和大于第三邊得:,解得3<x<6,①AC為斜邊,則32=x2+(9-x)2,即x2-9x+36=0,方程無解,即AC為斜邊不成立,②若AB為斜邊,則x2=(9-x)2+32,解得x=5,滿足3<x<6,③若BC為斜邊,則(9-x)2=32+x2,解得x=4,滿足3<x<6,∴x=5或x=4;故選C.【點睛】本題考查三角形的三邊關系,勾股定理等,分類討論和方程思想是解答的關鍵.20.B解析:B【分析】由于BC∥AD,那么有∠DAE=∠ACB,由題意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可證△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根據(jù)圖可知從B到E的走法有兩種,分別計算比較即可.【詳解】解:如右圖所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC==500m,∴CE=AC-AE=200,從B到E有兩種走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故選B.【點睛】本題考查了平行線的性質、全等三角形的判定和性質、勾股定理.解題的關鍵是證明△ABC≌△DEA,并能比較從B到E有兩種走法.21.D解析:D【分析】此題要分兩種情況:當5和13都是直角邊時;當13是斜邊長時;分別利用勾股定理計算出第三邊長即可求解.【詳解】當5和13都是直角邊時,第三邊長為:;當13是斜邊長時,第三邊長為:;故這個三角形的第三條邊可以是12.故選:D.【點睛】本題主要考查了勾股定理,當已知條件中沒有明確哪是斜邊時,要注意討論,一些學生往往忽略這一點,造成丟解.22.D解析:D【分析】設正方形ADOF的邊長為x,在直角三角形ACB中,利用勾股定理可建立關于x的方程,整理方程即可.【詳解】解:設正方形ADOF的邊長為x,由題意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,∴x2+10x=24,故選:D.【點睛】本題考查了正方形的性質、全等三角形的性質、勾股定理等知識;熟練掌握正方形的性質,由勾股定理得出方程是解題的關鍵.23.B解析:B【分析】將正方體的左側面與前面展開,構成一個長方形,用勾股定理求出距離即可.【詳解】解:如圖,AB=.故選:B.【點睛】此題求最短路徑,我們將平面展開,組成一個直角三角形,利用勾股定理求出斜邊就可以了.24.A解析:A【分析】求出兩小邊的平方和、最長邊的平方,看看是否相等即可.【詳解】A、12+()2=()2∴以1、、為邊組成的三角形是直角三角形,故本選項正確;
B、22+3242∴以2、3、4為邊組成的三角形不是直角三角形,故本選項錯誤;
C、
12+2232∴以1、2、3為邊組成的三角形不是直角三角形,故本選項錯誤;
D、
42+5262∴以4、5、6為邊組成的三角形不是直角三角形,故本選項錯誤;
故選A..【點睛】本題考查了勾股定理的逆定理應用,掌握勾股定理逆定理的內容就解答本題的關鍵.25.B解析:B【分析】如圖,作CD⊥AB于點D,由題意可得△ABC是等邊三角形,從而可得BD、OD的長,然后根據(jù)勾股定理即可求出CD與OC的長,進而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025湖南永州陸港樞紐投資發(fā)展集團有限公司招聘4人備考核心試題附答案解析
- 店面轉賣協(xié)議書
- 寒假工打工協(xié)議書
- 農(nóng)商展期合同范本
- 質押物品協(xié)議書
- 舞臺修建協(xié)議書
- 業(yè)務自律協(xié)議書
- 兼職協(xié)議正式合同
- 證券保密協(xié)議書
- 自愿私了協(xié)議書
- 2026屆四川南充市高考一診地理試卷試題(含答案詳解)
- 2026年鄭州澍青醫(yī)學高等專科學校單招職業(yè)技能測試必刷測試卷帶答案
- 2025年山東省煙臺市輔警招聘公安基礎知識考試題庫及答案
- (一診)達州市2026屆高三第一次診斷性測試英語試題(含標準答案)
- 2025年貴陽市公安輔警招聘知識考試題庫及答案
- 交管12123駕照學法減分題庫500題(含答案解析)
- 金屬補償器培訓
- 消防應急預案修訂記錄(3篇)
- (2026年)實施指南《JBT 13675-2019 筒式磨機 鑄造襯板 技術條件》
- TE1002常見終端產(chǎn)品配置維護-ZXV10 XT802
- 工藝部門技能提升培訓計劃
評論
0/150
提交評論