版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省忻州二中2025-2026學年數(shù)學高一上期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.把正方形沿對角線折起,當以,,,四點為頂點的三棱錐體積最大時,直線和平面所成角的大小為()A. B.C. D.2.已知集合,,若,則的值為A.4 B.7C.9 D.103.已知冪函數(shù)在上單調遞減,則m的值為()A.0 B.1C.0或1 D.4.已知兩個非零向量,滿足,則下面結論正確的是A. B.C. D.5.設,滿足約束條件,則的最小值與最大值分別為()A., B.2,C.4,34 D.2,346.若角與終邊相同,則一定有()A. B.C., D.,7.在直角梯形中,,,,分別為,的中點,以為圓心,為半徑的圓交于,點在弧上運動(如圖).若,其中,,則的取值范圍是A. B.C. D.8.圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側面積為84π,則圓臺較小底面的半徑為()A.7 B.6C.5 D.39.設函數(shù)的定義域,函數(shù)的定義域為,則()A. B.C. D.10.下列命題中,其中不正確個數(shù)是①已知冪函數(shù)的圖象經(jīng)過點,則②函數(shù)在區(qū)間上有零點,則實數(shù)的取值范圍是③已知平面平面,平面平面,,則平面④過所在平面外一點,作,垂足為,連接、、,若有,則點是的內心A.1 B.2C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.點分別為圓與圓上的動點,點在直線上運動,則的最小值為__________12.以等邊三角形每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形.勒洛三角形是由德國機械工程專家、機構運動學家勒洛首先發(fā)現(xiàn),所以以他的名字命名.一些地方的市政檢修井蓋、方孔轉機等都有應用勒洛三角形.如圖,已知某勒洛三角形的一段弧的長度為,則該勒洛三角形的面積是___________.13.函數(shù)在區(qū)間上的單調性是______.(填寫“單調遞增”或“單調遞減”)14.若兩個正實數(shù),滿足,且不等式恒成立,則實數(shù)的取值范圍是__________15.已知表示不超過實數(shù)的最大整數(shù),如,,為取整函數(shù),是函數(shù)的零點,則__________16.如圖,已知圓柱的軸截面是矩形,,是圓柱下底面弧的中點,是圓柱上底面弧的中點,那么異面直線與所成角的正切值為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(a>0且a≠1).(1)若f(x)在[-1,1]上的最大值與最小值之差為,求實數(shù)a的值;(2)若,當a>1時,解不等式.18.已知函數(shù)(1)求的值;(2)若對任意的,都有求實數(shù)的取值范圍.19.已知函數(shù).(1)當時,若方程式在上有解,求實數(shù)的取值范圍;(2)若在上恒成立,求實數(shù)的值范圍.20.在中,設角的對邊分別為,已知.(1)求角的大??;(2)若,求周長的取值范圍.21.已知,(1)求的值;(2)求的值;(3)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】當平面平面時,三棱錐體積最大,由此能求出結果【詳解】解:如圖,當平面平面時,三棱錐體積最大取的中點,則平面,故直線和平面所成的角為,故選:【點睛】本題考查直線與平面所成角的求法,解題時要注意空間思維能力的培養(yǎng),屬于中檔題2、A【解析】可知,或,所以.故選A考點:交集的應用3、A【解析】根據(jù)冪函數(shù)得的定義,求得或,結合冪函數(shù)的性質,即可求解.【詳解】由題意,冪函數(shù),可得,解得或,當時,可得,可得在上單調遞減,符合題意;當時,可得,可得在上無單調性,不符合題意,綜上可得,實數(shù)的值為.故選:A.4、B【解析】,所以,故選B考點:平面向量的垂直5、D【解析】畫出約束條件表示的可行域,通過表達式的幾何意義,判斷最大值與最小值時的位置求出最值即可【詳解】解:由,滿足約束條件表示的可行域如圖,由,解得的幾何意義是點到坐標原點的距離的平方,所以的最大值為,的最小值為:原點到直線的距離故選D【點睛】本題考查簡單的線性規(guī)劃的應用,表達式的幾何意義是解題的關鍵,考查計算能力,屬于??碱}型.6、C【解析】根據(jù)終邊相同角的表示方法判斷【詳解】角與終邊相同,則,,只有C選項滿足,故選:C7、D【解析】建立如圖所示的坐標系,則A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(xiàn)(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,),λ,μ用參數(shù)α進行表示,利用輔助角公式化簡,即可得出結論【詳解】解:建立如圖所示的坐標系,則A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(xiàn)(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,)?cosα=2λ﹣μ,sinα=λ?λ,∴6λ+μ=6()2(sinα+cosα)=2sin()∵,∴sin()∴2sin()∈[2,2],即6λ+μ的取值范圍是[2,2]故選D【點睛】本題考查平面向量的坐標運算,考查學生的計算能力,正確利用坐標系是關鍵.屬于中檔題8、A【解析】設圓臺上底面半徑為,由圓臺側面積公式列出方程,求解即可得解.【詳解】設圓臺上底面半徑為,由題意下底面半徑為,母線長,所以,解得.故選:A.【點睛】本題考查了圓臺側面積公式的應用,屬于基礎題.9、B【解析】求出兩個函數(shù)的定義域后可求兩者的交集.【詳解】由得,由得,故,故選:B.【點睛】本題考查函數(shù)的定義域和集合的交,函數(shù)的定義域一般從以下幾個方面考慮:(1)分式的分母不為零;(2)偶次根號(,為偶數(shù))中,;(3)零的零次方?jīng)]有意義;(4)對數(shù)的真數(shù)大于零,底數(shù)大于零且不為1.10、B【解析】①②因為函數(shù)在區(qū)間上有零點,所以或,即③平面平面,平面平面,,在平面內取一點P作PA垂直于平面與平面的交線,作PB垂直于平面,則所以平面④因為,且,所以,即是的外心所以正確命題為①③,選B二、填空題:本大題共6小題,每小題5分,共30分。11、7【解析】根據(jù)題意,算出圓M關于直線對稱的圓方程為.當點P位于線段上時,線段AB的長就是的最小值,由此結合對稱的知識與兩點間的距離公式加以計算,即可得出的最小值.【詳解】設圓是圓關于直線對稱的圓,
可得,圓方程為,
可得當點C位于線段上時,線段AB長是圓N與圓上兩個動點之間的距離最小值,
此時的最小值為AB,
,圓的半徑,
,
可得因此的最小值為7,
故答案為7.點睛:圓中的最值問題往往轉化動點與圓心的距離問題,本題中可以轉化為,再利用對稱性求出的最小值即可12、【解析】計算出一個弓形的面積,由題意可知,勒洛三角形由三個全等的弓形以及一個正三角形構成,利用弓形和正三角形的面積可求得結果.【詳解】由弧長公式可得,可得,所以,由和線段所圍成的弓形的面積為,而勒洛三角形由三個全等的弓形以及一個正三角形構成,因此,該勒洛三角形的面積為.故答案為:.13、單調遞增【解析】求出函數(shù)單調遞增區(qū)間,再判斷作答.【詳解】函數(shù)的圖象對稱軸為,因此,函數(shù)的單調遞增區(qū)間為,而,所以函數(shù)在區(qū)間上的單調性是單調遞增.故答案為:單調遞增14、【解析】根據(jù)題意,只要即可,再根據(jù)基本不等式中的“”的妙用,求得,解不等式即可得解.【詳解】根據(jù)題意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案為:15、2【解析】由于,所以,故.【點睛】本題主要考查對新定義概念的理解,考查利用二分法判斷函數(shù)零點的大概位置.首先研究函數(shù),令無法求解出對應的零點,考慮用二分法來判斷,即計算,則零點在區(qū)間上.再結合取整函數(shù)的定義,可求出的值.16、【解析】取圓柱下底面弧AB的另一中點D,連接C1D,AD,因為C是圓柱下底面弧AB中點,所以AD∥BC,所以直線AC1與AD所成角等于異面直線AC1與BC所成角,因為C1是圓柱上底面弧A1B1的中點,所以C1D⊥圓柱下底面,所以C1D⊥AD,因為圓柱的軸截面ABB1A1是矩形,AA1=2AB所以C1D=2AD,所以直線AC1與AD所成角的正切值為2,所以異面直線AC1與BC所成角的正切值為2故答案為:2.點睛:求兩條異面直線所成角關鍵是作為這兩條異面直線所成角,作兩條異面直線所成角的方法是:將其中一條一條直線平移與另一條相交相交或是將兩條異面直線同時平移到某個位置使他們相交,然后再同一平面內求相交直線所成角,值得注意的是:平移后相交所得的角必須容易算出,因此平移時要求選擇恰當位置.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)2或;(2)或.【解析】(1)對a值分類討論,根據(jù)單調性列出最值之差表達式即可求解;(2)由函數(shù)的奇偶性、單調性脫去給定不等式中的法則“”,轉化為一元二次不等式,求解即得.【詳解】(1)①當,f(x)在[-1,1]上單調遞增,,解得,②當時,f(x)在[-1,1]上單調遞減,,解得,綜上可得,實數(shù)a的值為2或.(2)由題可得定義域為,且,所以為上的奇函數(shù);又因為,且,所以在上單調遞增;所以,或,所以不等式的解集為或.【點睛】解抽象的函數(shù)不等式,分析對應函數(shù)的奇偶性和單調性是解決問題的關鍵.18、(1)(2)【解析】(1)代入后,利用余弦的二倍角公式進行求解;(2)先化簡得到,進而求出的最大值,求出實數(shù)的取值范圍.【小問1詳解】【小問2詳解】因為x∈,所以2x+∈,所以當2x+=,即x=時,取得最大值.所以對任意x∈,等價于≤c.故實數(shù)c的取值范圍是.19、(1)(2)【解析】(1)將代入函數(shù),根據(jù)函數(shù)單調性得到,計算函數(shù)值域得到答案.(2)根據(jù)函數(shù)定義域得到,考慮和兩種情況,根據(jù)函數(shù)的單調性得到不等式,解不等式得到答案.【小問1詳解】,,,故,即,函數(shù)上單調遞增,故.【小問2詳解】,且,解得.當時,,函數(shù)開口向上,對稱軸為,故函數(shù)在上單調遞增,故,解得或,故;當時,,函數(shù)開口向上,對稱軸為,故在上單調遞增,故,解得,,不成立.綜上所述:.20、(1);(2)【解析】(1)由三角函數(shù)的平方關系及余弦定理即可得出(2)利用正弦定理、兩角和差的正弦公式、三角函數(shù)的單調性轉化為三角函數(shù)求值域即可得出.【詳解】(1)由題意知,即,由正弦定理得由余弦定理得,又.(2),則的周長.,,周長的取值范圍是.【點睛】本題主要考查了三角函數(shù)的平方關系,正余弦定理,兩角和差的正弦公式,三角函數(shù)的單調性,屬于中檔題.21、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DSA護理中的兒科護理與護理
- 孕期乳房護理與母乳喂養(yǎng)準備
- 護理教學中的學生主體性發(fā)揮
- 九年級上冊語文期末作文押題??贾黝}范文6篇
- 第二章第三節(jié)河流第1課時
- 地址識別與反欺詐系統(tǒng)設計
- 房地產 -日內瓦辦公室2025年第三季度 Snapshot Office Geneva Q3 2025
- 城市發(fā)展戲劇影響
- 2026 年中職康復治療技術(言語治療)試題及答案
- 辦公樓網(wǎng)絡升級服務協(xié)議2025
- 2025-2026學年教科版小學科學新教材三年級上冊期末復習卷及答案
- 中投公司高級職位招聘面試技巧與求職策略
- 2026中國大唐集團資本控股有限公司高校畢業(yè)生招聘考試歷年真題匯編附答案解析
- 2025福建三明市農業(yè)科學研究院招聘專業(yè)技術人員3人筆試考試備考題庫及答案解析
- 統(tǒng)編版(部編版)小學語文四年級上冊期末測試卷( 含答案)
- 養(yǎng)老金贈予合同范本
- 2025年南網(wǎng)能源公司社會招聘(62人)考試筆試參考題庫附答案解析
- 2025年河南中原國際會展中心有限公司社會招聘44名筆試備考題庫附答案解析
- 推廣示范基地協(xié)議書
- 消防員心理健康教育課件
- 2025年服裝行業(yè)五年發(fā)展時尚產業(yè)與可持續(xù)發(fā)展報告
評論
0/150
提交評論