山西省忻州市2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁
山西省忻州市2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁
山西省忻州市2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁
山西省忻州市2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁
山西省忻州市2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山西省忻州市2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.空間四點共面,但任意三點不共線,若為該平面外一點且,則實數(shù)的值為()A. B.C. D.2.已知圓的方程為,圓的方程為,其中.那么這兩個圓的位置關(guān)系不可能為()A.外離 B.外切C.內(nèi)含 D.內(nèi)切3.若向量則()A. B.3C. D.4.已知函數(shù)在處取得極值,則的極大值為()A. B.C. D.5.已知向量,則()A.5 B.6C.7 D.86.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的m的值是()A.-1 B.0C.0.1 D.17.已知分別是等差數(shù)列的前項和,且,則()A. B.C. D.8.在空間直角坐標(biāo)系中,已知,,則MN的中點P到坐標(biāo)原點О的距離為()A. B.C.2 D.39.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.10.過點且與直線垂直的直線方程是()A. B.C. D.11.在公比為的等比數(shù)列中,前項和,則()A.1 B.2C.3 D.412.某海關(guān)緝私艇在執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時間為()A.1h B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示,則該幾何體的體積為______.14.已知橢圓方程為,左、右焦點分別為、,P為橢圓上的動點,若的最大值為,則橢圓的離心率為___________.15.若復(fù)數(shù)滿足,則_____16.?dāng)?shù)列的前項和為,若,則=____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,已知,,且.(1)求角的大?。唬?)若,面積為,試判斷的形狀,并說明理由.18.(12分)已知圓的方程為:.(1)求的值,使圓的周長最??;(2)過作直線,使與滿足(1)中條件的圓相切,求的方程,并求切線段的長.19.(12分)已知橢圓的左、右焦點分別為,若焦距為4,點P是橢圓上與左、右頂點不重合的點,且的面積最大值.(1)求橢圓的方程;(2)過點的直線交橢圓于點、,且滿足(為坐標(biāo)原點),求直線的方程.20.(12分)已知命題實數(shù)滿足成立,命題方程表示焦點在軸上的橢圓,若命題為真,命題或為真,求實數(shù)的取值范圍21.(12分)(1)已知集合,.:,:,并且是的充分條件,求實數(shù)的取值范圍(2)已知:,,:,,若為假命題,求實數(shù)的取值范圍22.(10分)甲乙兩人輪流投籃,每人每次投一球,約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結(jié)束,設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響(1)求甲乙各投球一次,比賽結(jié)束的概率;(2)求甲獲勝的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由空間向量共面定理構(gòu)造方程求得結(jié)果.【詳解】空間四點共面,但任意三點不共線,,解得:.故選:A.2、C【解析】求出圓心距的取值范圍,然后利用圓心距與半徑的和差關(guān)系判斷.【詳解】由兩圓的標(biāo)準(zhǔn)方程可得,,,;則,所以兩圓不可能內(nèi)含.故選:C.3、D【解析】先求得,然后根據(jù)空間向量模的坐標(biāo)運算求得【詳解】由于向量,,所以.故故選:D4、B【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可求出參數(shù)的值,從而得到函數(shù)解析式,再根據(jù)導(dǎo)函數(shù)得到函數(shù)單調(diào)性,即可求出函數(shù)的極值點,從而求出函數(shù)的極大值;【詳解】解:因為,所以,依題意可得,即,解得,所以定義域為,且,令,解得或,令解得,即在和上單調(diào)遞增,在上單調(diào)遞減,即在處取得極大值,在處取得極小值,所以;故選:B5、A【解析】利用空間向量的模公式求解.【詳解】因向量,所以,故選:A6、B【解析】計算后,根據(jù)判斷框直接判斷即可得解.【詳解】輸入,計算,判斷為否,計算,輸出.故選:B.7、D【解析】利用及等差數(shù)列的性質(zhì)進行求解.【詳解】分別是等差數(shù)列的前項和,故,且,故,故選:D8、A【解析】利用中點坐標(biāo)公式及空間中兩點之間的距離公式可得解.【詳解】,,由中點坐標(biāo)公式,得,所以.故選:A9、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因為直線的傾斜角為45°,所以直線的斜率為,因為直線在軸上的截距是,所以所求的直線方程為,即,故選:B10、C【解析】根據(jù)兩直線垂直時斜率乘積為,可以直接求出所求直線的斜率,再根據(jù)點斜式求出直線方程,最后化成一般式方程即可.【詳解】因為直線的斜率為,故所求直線的斜率等于,所求直線的方程為,即,故選:C11、C【解析】先利用和的關(guān)系求出和,再求其公比.【詳解】由,得,,所以,,則.故選:C.12、A【解析】設(shè)小時后,相遇地點為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點,建立如下圖所示的直角坐標(biāo)系.圖中走私船所在位置為,設(shè)緝私艇追上走私船的最短時間為,相遇地點為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因為20min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達.在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時間為1h.故選:A.點睛】二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)三視圖還原幾何體,由此計算出幾何體的體積.【詳解】根據(jù)三視圖可知,該幾何體為如圖所示三棱錐,所以該幾何體的體積為.故答案為:14、【解析】利用橢圓的定義結(jié)合余弦定理可求得,再利用公式可求得該橢圓的離心率的值.【詳解】由橢圓的定義可得,由余弦定理可得,因為的最大值為,則,可得,因此,該橢圓的離心率為.故答案為:.15、【解析】設(shè),則,利用復(fù)數(shù)相等,求出,的值,結(jié)合復(fù)數(shù)的模長公式進行計算即可【詳解】設(shè),則,則由得,即,則,得,則,故答案為【點睛】本題主要考查復(fù)數(shù)模長的計算,利用待定系數(shù)法,結(jié)合復(fù)數(shù)相等求出復(fù)數(shù)是解決本題的關(guān)鍵16、【解析】利用裂項相消法求和即可.【詳解】解:因為,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)為等邊三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,從而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;聯(lián)立①②可求得b=c=,從而可判斷△ABC的形狀【詳解】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0∵0<B<π,∴sinB≠0,∴cosA=.∵0<A<π,∴A=(2)△ABC為等邊三角形,∵S△ABC=bcsinA=,即bcsin=,∴bc=3,①∵a2=b2+c2﹣2bccosA,A=,a=,∴b2+c2=6,②由①②得b=c=,∴△ABC為等邊三角形【點睛】本題考查三角形形狀的判斷,著重考查正弦定理與余弦定理的應(yīng)用,考查方程思想與運算求解能力,屬于中檔題18、(1)(2)直線方程為或,切線段長度為4【解析】(1)先求圓的標(biāo)準(zhǔn)方程,由半徑最小則周長最?。唬?)由,則圓的方程為:,直線和圓相切則圓心到直線的距離等于半徑,分直線與軸垂直和直線與軸不垂直兩種情況進行討論即可得解.進一步,利用圓的幾何性質(zhì)可求解切線的長度.【小問1詳解】,配方得:,當(dāng)時,圓的半徑有最小值2,此時圓的周長最小.【小問2詳解】由(1)得,,圓的方程為:.當(dāng)直線與軸垂直時,,此時直線與圓相切,符合條件;當(dāng)直線與軸不垂直時,設(shè)為,由直線與圓相切得:,解得,所以切線方程為,即.綜上,直線方程為或.圓心與點的距離,則切線長度為.19、(1)(2)或【解析】(1)根據(jù)焦距求出,利用面積最大值,得到求出,從而得到,求出橢圓方程;(2)分直線斜率存在和斜率不存在,結(jié)合題干條件得到,進而求出直線方程.【小問1詳解】∵∴,又的面積最大值,則,所以,從而,,故橢圓的方程為:;【小問2詳解】①當(dāng)直線的斜率存在時,設(shè),代入③整理得,設(shè)、,則,所以,點到直線的距離因為,即,又由,得,所以,.而,,即,解得:,此時;②當(dāng)直線的斜率不存在時,,直線交橢圓于點、.也有,經(jīng)檢驗,上述直線均滿足,綜上:直線的方程為或.【點睛】圓錐曲線中,有關(guān)向量的題目,要結(jié)合條件選擇不同的方法,一般思路有轉(zhuǎn)化為三角形面積,或者線段的比,或者由向量得到共線等.20、或【解析】首先根據(jù)復(fù)數(shù)的乘方及復(fù)數(shù)模的計算公式求出命題為真時參數(shù)的取值范圍,再根據(jù)橢圓的性質(zhì)求出命題為真時參數(shù)的取值范圍,依題意為假,為真,即可求出參數(shù)的取值范圍;【詳解】解:因為,,,,所以,所以,所以為真時,因為方程表示焦點在軸上的橢圓,所以,所以,即為真時,所以為假時參數(shù)的取值范圍為或,因為命題為真,命題或為真,所以為假,為真,或21、(1);(2)【解析】(1)由二次函數(shù)的性質(zhì),求得,又由,求得集合,根據(jù)命題是命題的充分條件,所以,列出不等式,即可求解(2)依題意知,均為假命題,分別求得實數(shù)的取值范圍,即可求解【詳解】(1)由,∵,∴,,∴,所以集合,由,得,所以集合,因為命題是命題的充分條件,所以,則,解得或,∴實數(shù)的取值范圍是.(2)依題意知,,均為假命題,當(dāng)是假命題時,恒成立,則有,當(dāng)是假命題時,則有,或.所以由均為假命題,得,即.【點睛】本題主要考查了復(fù)合命題的真假求參數(shù),以及充要條件的應(yīng)用,其中解答中正確得出集合間的關(guān)系,列出不等式,以及根據(jù)復(fù)合命題的真假關(guān)系求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題22、(1)(2)【解析】(1)設(shè)事件“甲在第次投籃投中”,設(shè)事件“乙在第次投籃投中”,記“甲乙

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論