版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
TLP:CLEAR
Y&NFRA
C
Cu
RITYAG
PrinciplesfortheSecureIntegrationofArtificialIntelligenceinOperationalTechnology
Publication:December3,2025
U.S.CybersecurityandInfrastructureSecurityAgencyAustralianSignalsDirectorate’sAustralianCyber
SecurityCentre
U.S.NationalSecurityAgency’sArtificialIntelligenceSecurityCenter
U.S.FederalBureauofInvestigation
CanadianCentreforCyberSecurity
GermanFederalOfficeforInformationSecurityNetherlandsNationalCyberSecurityCentre
NewZealandNationalCyberSecurityCentre
UnitedKingdomNationalCyberSecurityCentre
ThisdocumentismarkedTLP:CLEAR.Disclosureisnotlimited.SourcesmayuseTLP:CLEARwheninformationcarries
minimalornoforeseeableriskofmisuse,inaccordancewithapplicablerulesandproceduresforpublicrelease.Subjecttostandardcopyrightrules,TLP:CLEARinformationmaybedistributedwithoutrestriction.Formoreinformation,see
TrafficLightProtocol(TLP)DefinitionsandUsage
.
TLP:CLEAR
PrinciplesfortheSecureIntegrationofArtificialIntelligenceinOperationalTechnologyTLP:CLEAR
CISA|ASD’sACSC|NSAAISC|FBI|CyberCentre|BSI|NCSC-NL|NCSC-NZ|NCSC-UK
Page2of25TLP:CLEAR
TableofContents
Introduction 3
ImportantTerminology 3
Scope 4
TypesofAITechniques 4
AIApplicationsAccordingtothePurdueModel 5
PrinciplesfortheSecureIntegrationofAIinOT 7
Principle1–UnderstandAI 7
1.1UnderstandtheUniqueRisksofAIandPotentialImpacttoOT 7
1.2UnderstandtheSecureAISystemDevelopmentLifecycle 9
1.3EducatePersonnelonAI 10
Principle2–ConsiderAIUseintheOTDomain 11
2.1ConsidertheOTBusinessCaseforAIUse 11
2.2ManageOTDataSecurityRisksforAISystems 12
2.3UnderstandingtheRoleofOTVendorsinAIIntegration 13
2.4EvaluateChallengesinAI-OTSystemIntegration 14
Principle3–EstablishAIGovernanceandAssuranceFrameworks 16
3.1EstablishGovernanceMechanismsforAIinOT 16
3.2IntegratingAIIntoExistingSecurityandCybersecurityFrameworks 17
3.3ConductThoroughAITestingandEvaluation 17
3.4NavigatingRegulatoryandComplianceConsiderationsforAIinOT 18
Principle4–EmbedOversightandFailsafePracticesIntoAIandAI-EnabledOTSystems 18
4.1EstablishMonitoringandOversightMechanismsforAIinOT 18
4.2EmbedSafetyandFailsafeMechanisms 20
Conclusion 21
Resources 21
Disclaimer 22
Acknowledgements 22
VersionHistory 22
Appendix:Terminology 23
References 25
PrinciplesfortheSecureIntegrationofArtificialIntelligenceinOperationalTechnologyTLP:CLEAR
CISA|ASD’sACSC|NSAAISC|FBI|CyberCentre|BSI|NCSC-NL|NCSC-NZ|NCSC-UK
Page3of25TLP:CLEAR
Introduction
SincethepublicreleaseofChatGPTinNovember2022,artificialintelligence(AI)hasbeenintegratedintomanyfacetsofhumansociety.Forcriticalinfrastructureownersandoperators,AIcanpotentiallybeusedtoincreaseefficiencyandproductivity,enhancedecision-making,savecosts,andimprovecustomer
experience.Despitethemanybenefits,integratingAIintooperationaltechnology(OT)environmentsthatmanageessentialpublicservicesalsointroducessignificantrisks—suchasOTprocessmodelsdriftingovertimeorsafety-processbypasses—thatownersandoperatorsmustcarefullymanagetoensurethe
availabilityandreliabilityofcriticalinfrastructure.
Thisguidance—co-authoredbytheCybersecurityandInfrastructureSecurityAgency(CISA)andAustralianSignalsDirectorate’sAustralianCyberSecurityCentre(ASD’sACSC)incollaborationwiththeNational
SecurityAgency’sArtificialIntelligenceSecurityCenter(NSAAISC),theFederalBureauofInvestigation
(FBI),theCanadianCentreforCyberSecurity(CyberCentre),theGermanFederalOfficeforInformation
Security(BSI),theNetherlandsNationalCyberSecurityCentre(NCSC-NL),theNewZealandNationalCyberSecurityCentre(NCSC-NZ),andtheUnitedKingdomNationalCyberSecurityCentre(NCSC-UK),hereafterreferredtoasthe“authoringagencies”—providescriticalinfrastructureownersandoperatorswithpracticalinformationforintegratingAIintoOTenvironments.Thisguidanceoutlinesfourkeyprinciplescritical
infrastructureownersandoperatorscanfollowtoleveragethebenefitsofAIinOTsystemswhilereducingrisk:
1.UnderstandAI.UnderstandtheuniquerisksandpotentialimpactsofAIintegrationintoOTenvironments,theimportanceofeducatingpersonnelontheserisks,andthesecureAI
developmentlifecycle.
2.ConsiderAIUseintheOTDomain.AssessthespecificbusinesscaseforAIuseinOTenvironmentsandmanageOTdatasecurityrisks,theroleofvendors,andtheimmediateandlong-term
challengesofAIintegration.
3.EstablishAIGovernanceandAssuranceFrameworks.Implementrobustgovernancemechanisms,integrateAIintoexistingsecurityframeworks,continuouslytestandevaluateAImodels,and
considerregulatorycompliance.
4.EmbedSafetyandSecurityPracticesIntoAIandAI-EnabledOTSystems.ImplementoversightmechanismstoensurethesafeoperationandcybersecurityofAI-enabledOTsystems,maintaintransparency,andintegrateAIintoincidentresponseplans.
TheauthoringagenciesencouragecriticalinfrastructureownersandoperatorstoreviewthisguidanceandactiontheprinciplessotheycansafelyandsecurelyintegrateAIintoOTsystems.
ImportantTerminology
ThescopeofthisguidancespecificallycovershowcriticalinfrastructureownersandoperatorscanhelpensurethesafetyandsecurityofAIsystemsinOTenvironments.Assuch,theauthoringagenciesusethefollowingspecificdefinitionsfortermsinthisguidanceinordertoavoidconflationwiththeirdefinitionsinothercontexts:
PrinciplesfortheSecureIntegrationofArtificialIntelligenceinOperationalTechnologyTLP:CLEAR
CISA|ASD’sACSC|NSAAISC|FBI|CyberCentre|BSI|NCSC-NL|NCSC-NZ|NCSC-UK
Page4of25TLP:CLEAR
Artificialintelligence(AI)isasystemthatusesmachine-andhuman-basedinputstomakepredictions,recommendations,ordecisionsinfluencingrealorvirtualenvironments.1
Safetyreferstophysicalsafety(formally,functionalsafety)inanOTenvironment.OTsystems
controlphysicalsystemsthatcanharmpeopleorproperty,suchassystemsthatdeliverbiologicalorchemicalagents,controloperationsforadamorwastewatertreatment,orautomatetheflowofvehicletraffic.Inthisguidance,“safety”asawordonitsownalwaysreferstofunctionalsafety.
Security(usedinterchangeablyinthisguidancewith“informationsecurity”and“cybersecurity”)referstoensuringthesecurityproperties—suchasconfidentiality,integrity,andavailability—ofinformationandinformationsystems.
See
Appendix:Terminology
forafulllistofdefinitionswithinthescopeofthisguidanceandsourcesforthesedefinitions.
Scope
Machinelearning(ML),statisticalmodeling,andalgorithmiccalculationsareallsubsetsofAItechniquesthathavebeenusedincriticalinfrastructureengineeringprocessesformanyyears.WhileMLand
traditionalstatisticalmodelingarebothusedforpredictingoutcomesormakingdecisionsbasedondata,theydifferintheirapproach,assumptions,applications,andconsiderationsforsecureintegrationwithOTsystems.ThescopeofthisguidancefocusesonML-andlargelanguagemodel(LLM)-basedAIandAI
agentsbecauseintegratingOTwiththesetypesofAIsystemsinvolvesmorecomplexsafetyandsecurityconsiderations.However,thisguidancemayalsobeappliedtosystemsaugmentedwithtraditional
statisticalmodelingandotherlogic-basedautomation.ThefollowingsubsectionsdefinethesedifferentAItechniques.
TypesofAITechniques
Traditionalstatisticalmodelingusesmathematicalformulastoaccuratelydescribetherelationships
betweenvariables.Itassumesthatthedatafollowscertaindistributionsandthattherelationshipsare
eitherlinearorcanbeapproximatedbylinearmodels.Statisticalmodelingusestechniquessuchas
regressionanalysis,hypothesistesting,andconfidenceintervalstodirectlyestimatemodelparameters
andmakepredictions.Itiscommonlyusedfortaskssuchasforecasting,optimization,andassistingin
operatordecision-making.Non-machine-learning-basedAIsystemsemployalgorithmstoautomate
decision-makingandcontrolprocesses;inOTsystems,thisincludesladderlogicautomationroutinesandaclassofsafetyinstrumentedsystems.
Machinelearningsystemsusealgorithmstolearnfromdataandmakepredictionsordecisionswithoutbeingexplicitlyprogrammed.TheMLmodelcanhandlecomplexrelationshipsandnon-linearinteractionsbetweenvariables.MLmodelsusevarioustechniques—suchassupervised,unsupervised,and
reinforcementlearning—whendevelopingrepresentationsandmakingpredictionsbasedondata.MLis
1ThisdocumentusesthisAIdefinitionfrom
15U.S.C.9401(3)
;however,definitionsofAImayvaryamonggroupsandjurisdictions.
Page5of25TLP:CLEAR
commonlyusedinfieldslikecomputervision,naturallanguageprocessing,androboticsfortaskssuchasimageclassification,speechrecognition,andautonomousdriving.
LargelanguagemodelsareadvancedMLmodelsdesignedtounderstandanaturallanguagepromptandgeneratearesponsethathumanscanunderstand.LLMsusepatternsinlanguageandmultimodal
datasetsintheproductionofcomplexresponsestouserprompts.LLMengineersusuallybuildin
randomnesswhengeneratingoutputs2sothattheLLMsdontalwaysproducethesameresponsetothesameinputs.LLMscanpowergenerativeAIapplicationsthatsupportcriticalinfrastructureentitiesby
enhancingdecision-making,automatingroutinetasks,andoptimizingmaintenanceschedules,withthegoalofimprovingefficiencyandreliabilityinoperations.
AIagentsareatypeofsoftwarethatcanprocessdata,performdecision-makingcapabilities,andinitiateautonomousactionsusingAIandMLmodels.TherearemanytypesofagenticAIsystems,including
systemsthatuseLLMstopowergenerativeAIapplicationsoragentsandsystemsthatcombinedifferentMLtechniques,perspectivesofanalysis,decision-makingmethodologies,andautonomousaction
capabilities.LikeLLMs,theycanenhancedecision-making,automateroutinetasks,andoptimize
maintenanceschedules,whichenablesthemtoimproveandstreamlinecriticalinfrastructureoperations.Implementingerror-checkingcanimproveAIagentsperformancebyavoidingproblemsandensuringitsoutputsarewithintheexpectedbounds.
AIApplicationsAccordingtothePurdueModel
ThePurdueModelisstillawidelyacceptedframeworkforunderstandingthehierarchicalrelationships
betweenOTandITdevicesandnetworks.
Table1
showsexamplesofestablishedandpotentialAI
applicationsincriticalinfrastructureaccordingtothePurdueModel.3MLtechniques,suchaspredictive
models,aretypicallyusedinoperationallayers(03),whileLLMsaretypicallyusedinthebusinesscontext(45),potentiallyondataexportedfromtheOTnetwork.
Table1.AIApplicationsAccordingtothePurdueModel
Level
Description
ExampleAIUses
Level0:FieldDevices
Sensors,actuators,andother
devicesthatinteractwithphysicalprocesses.
OTdatasource:FielddevicesmaygenerateOTdatathatcanbeusedfortrainingAImodels(primarily
predictiveMLmodels)oridentifyingsignificantdeviations.
2SanderShulhoff,“BasicLLMSettings,”LearnPrompting,lastmodifiedMarch10,2025,
/docs/intermediate/configuration_hyperparameters
.
3TheversionofthePurdueModelusedinthisguidancewassourcedfromManuelHumbertoSantanderPelaez,
“ControllingNetworkAccesstoICSSystems,”Diaries(blog),SANSTechnologyInstituteInternetStormCenter,July3,2023,
/diary/30000
.
Page6of25TLP:CLEAR
Level
Description
ExampleAIUses
Level1:LocalControllers
Apparatusandsystemsdesignedtoofferautomatedregulationofaprocess,cell,orline;examples
includeprogrammablelogiccontrollers(PLCs)andremoteterminalunits(RTUs).
AIforlocalcontrol:SomemodernPLCsoredge
controllersexecutelightweight,pre-trainedpredictivemodelsforclassificationfortaskslikelocalanomalydetection,loadbalancing,andmaintainingaknownsafestate.
Level2:LocalSupervisory
Observationandmanagerial
oversightforanindividualprocess,line,orcell;examplesinclude
supervisorycontrolanddata
acquisition(SCADA)systems,
distributedcontrolsystems(DCSs),andhuman-machineinterfaces
(HMIs).
Qualitycontrol:AImodels(primarilypredictiveMLmodels)maybeusedforanalyzingdatafromtheSCADAsystemorDCStodetectearlysignsof
equipmentanomaliesandalertoperatorsthatcorrectiveactionmayberequired.
Level3:Site-Wide
Supervisory
Monitoring,supervisory,and
operationalsupportforallorpartoftheregionscoveredbythe
company;examplesinclude
manufacturingexecutionsystemsandhistorians.
Predictivemaintenance:AImodels(primarily
predictiveMLmodels)maybeusedforanalyzingaggregatedhistorianOTdataandpredicting
equipmentmaintenancerequirements.
Supportoperatordecision-making:AImodelsmayalsobeintegratedintolocalsupervisorysystemstoprovidesystemrecommendationsthatsupport
operatordecision-making,suchasoperationsmeasurement.
Levels4&5:
Enterprise&Business
Networks
ITsystemsthatmanagebusinessandcorporateprocessesand
decisions;inthecontextofcriticalinfrastructureandOT,examplesincludeOTdataanalysisand
autonomousdefenseforbothOTandITsystems.
Workflowoptimization:AIsystems(includingAIagentsandLLMs)maybeusedforimprovingbusinessprocesses,suchastheintersectionbetweenbusinessusecasesandengineering.
BehavioralanalyticsandprofilingofOTandITdata:AIcanbeusedforanalyzingOTdatainconjunctionwithITdatatomeasureoperations,performanomalyandthreatdetection,determinehardening
mitigations,andprovideinformationthatsupportsprioritizedresiliencydecisions.
Page7of25TLP:CLEAR
PrinciplesfortheSecureIntegrationofAIinOT
Principle1–UnderstandAI
1.1UnderstandtheUniqueRisksofAIandPotentialImpacttoOT
ThefollowingsectiondiscussesAIintegrationrisksandthepotentialimpacttoOToperations.
Table2
providesabroadoverviewofknownAIrisksthatcriticalinfrastructureownersandoperatorsshould
consider.(Note:Thisisanon-exhaustivelist;criticalinfrastructureownersandoperatorsshouldinvestigaterisksspecifictotheirorganization.)Subsequentsectionsofthisguidancediscussmitigationconsiderationsfortheserisks;seecross-referencesintheMitigationscolumnof
Table2.
Table2.AIRisksandImpactsinanOTEnvironment
AIRisksinanOTEnvironment
OTImpacts
Mitigations
CybersecurityRisks:AIdata,models,anddeploymentsoftwarecanbe
manipulatedtocauseincorrect
outcomesorbypasssecurityand
functionalsafetymeasuresor
guardrails.TraditionalcybersecurityrisksremainwithinAIsystems;assuch,securitymeasureslikeaccesscontrol,auditing,andencryptionstillapplyforsecuringAIandAI-enabledsystems.Inaddition,AI-enabled
systemsaresubjecttoAI-specificcybersecurityrisks,suchaspromptinjection.
Impactedsystemavailability,functionalsafetyrisks,
financiallosses,reputationaldamage,network/OT
compromise,cascading
compromise.
1.2UnderstandtheSecureAI
SystemDevelopmentLifecycle
2.4EvaluateChallengesinAI-OT
SystemIntegration
3.3ConductThoroughAITesting
andEvaluation
DataQuality:AImodelscanonlybeaseffectiveasthequalityoftheir
trainingdata.Collectinghigh-quality,normalizedsensordatacanbe
difficult,especiallyindistributedOTenvironments.Centralizingthis
operationaldatacreatesitsownriskasthreatactorscanuseittocreateamoretargetedengineeringimpact.
ReducedOTsafetyandsystemavailabilityfrompoordata
quality.
2.2ManageOTDataSecurityRisks
forAISystems
Page8of25TLP:CLEAR
AIRisksinanOTEnvironmentOTImpactsMitigations
AIModelDrift:AImodelsmaybecomelessaccurateovertimeduetodatabeingintroducedtothemodelthatisnotrepresentedbythemodel’sinitialtrainingdata.Alterationsto
productionprocessescanaffectmodelperformance.
Increaseddependenciesonchanges,lossofproductivity,reducedOTsafetyandsystemavailability.
4.1EstablishMonitoringand
OversightMechanismsforAIinOT
LackofExplainability:UnderstandinganAImodel’sdecision-making
processmaybedifficult;thismakesitchallengingtodiagnoseandcorrecterrorsorproperlyauditasystem.
Increasedrecoverytime,
functionalsafetyrisks,
reducedsystemavailability,complexityintroubleshooting.
1.3EducatePersonnelonAI
4.1EstablishMonitoringand
OversightMechanismsforAIinOT
OperatorCognitiveLoadand
UnnecessaryDowntime:AImay
generatealarmerrorsthatcould
causeunnecessarydowntimeor
safetyincidents.Thesealarmerrorsincreasecognitiveload,distract
operators,andpotentiallyleadtofurtherhumanerror.
Reducedsystemavailability,functionalsafetyrisks,
financiallosses,reputationaldamage.
1.3EducatePersonnelonAI
4.1EstablishMonitoringand
OversightMechanismsforAIinOT
RegulatoryCompliance:Compliancewithregulatoryrequirements,suchasthoserelatedtoOTsafetyorprivacy,canbechallengingduetothe
evolvingnatureofAI,technical
standards,andregulatory
frameworks.Forexample,while
producingarobustaudittrailofAI-drivendecision-makingmaybe
difficult,itmayberequiredforregulatorycompliance.
Functionalsafetyrisks,
financiallosses,reputationaldamage.
3.4NavigatingRegulatoryand
ComplianceConsiderationsforAI
inOT
4.1EstablishMonitoringand
OversightMechanismsforAIinOT
4.2EmbedSafetyandFailsafe
Mechanisms
AIDependency:OverrelianceonAI
canleadtooperatorsmissingcriticalsafety-relatedinformationiftheAI
missesit,andlosingvaluableskillsforsafelyoperatingequipment
manuallyorwithouttheAIfunctionality.
Dependenceontechnology,complexityintroubleshooting.
1.3EducatePersonnelonAI
Page9of25TLP:CLEAR
AIRisksinanOTEnvironment
OTImpacts
Mitigations
2.1ConsidertheOTBusinessCase
InteroperabilityIssues:IntegratingAI
forAIUse
systemswithexistingOT
2.4EvaluateChallengesinAI-OT
infrastructurecanbecomplicatedbyinteroperabilitychallenges,whichmayarisefromdifferencesinOT
Increasedmaintenancecosts,recoverychallenges.
SystemIntegration
3.1EstablishGovernance
communicationprotocolsordata
MechanismsforAIinOT
formats.
3.3ConductThoroughAITesting
andEvaluation
Complexity:IncorporatingAIusually
2.1ConsidertheOTBusinessCase
requiresincreasingthecomplexityof
Functionalsafetyrisks,
forAIUse
theoverallsystemtosupportprocess
complexityintroubleshooting.
2.4EvaluateChallengesinAI-OT
automation.
SystemIntegration
DecisionsmadebyAI
developersmayposeOTsafety
2.1ConsidertheOTBusinessCase
forAIUse
Reliability:AImaynotbereliable
andreliabilityrisks,increased
3.1EstablishGovernance
enoughtoindependentlymake
documentationcosts,
MechanismsforAIinOT
criticaldecisionsinindustrial
environments.AIcanalsohallucinate(i.e.,fabricateaplausible,butfalse,responseordata),whichwould
uncertaintyduetochangesinautomateddecision-making
overtime,increasedriskof
cascadingfailureduetotighter
3.2IntegratingAIIntoExisting
SecurityandCybersecurity
Frameworks
provideoperatorswithincorrect
couplingofactions.
3.3ConductThoroughAITesting
informationfordecision-making.As
andEvaluation
such,AIsuchasLLMsalmost
Falseinformationprovidedto
certainlyshouldnotbeusedtomake
decisionmakersposesrisksof
4.1EstablishMonitoringand
safetydecisionsforOTenvironments.
unsafeoperatingconditions,equipmentdamage,
productionhalts.
OversightMechanismsforAIinOT
4.2EmbedSafetyandFailsafe
Mechanisms
1.2UnderstandtheSecureAISystemDevelopmentLifecycle
ToaddresstheuniquechallengesofintegratingAIintoOTenvironments,criticalinfrastructureownersandoperatorsshouldverifythattheAIsystemwasdesignedsecurelyandunderstandtheirrolesand
responsibilitiesthroughtheAIsystem’slifecycle.Similartohybridownershipmodelsusedwithcloud
systems,ownersandoperatorsmustclearlydefineandcommunicatetheserolesandresponsibilitieswiththeAIsystemmanufacturer,OTsupplier,andanysystemintegratorormanagedserviceproviderroles.
Page10of25TLP:CLEAR
NCSC-UKandCISA’sjoint
GuidelinesforSecureAISystemDevelopment
emphasizesthefollowingkeystagesoftheAIsystemdevelopmentlifecycle:4
SecureDesign.DesigntheAIsystemwithsecurityconsiderationsinmindfromitsinception,includingusingrobustcoding,protocols,anddataprotectionmeasures.
SecureProcurementorDevelopment.SelectvendorswhoadheretosecurepracticesanddevelopAIsystemsusingsecuremethodologiesandtools.
SecureDeployment.DeploytheAIsystemusingmethodsthatmaintainitssecurityposture,
includingusingpropernetworksegmentationandaccesscontrol,aswellasverifyingandvalidatingthattheAIsystemworksasintended.
SecureOperationandMaintenance.EnsuretheAIsystemcontinuesoperatingsecurelythroughoutitslifecycle,includingbyimplementingregularupdatesandpatches,andmonitoringpotential
vulnerabilities.
Criticalinfrastructureownersandoperatorsshouldalsocarefullyevaluatethetrade-offsbetweendifferentmethodsforsourcinganAIsystem:
ProcureanAISystem.Selectapre-developedAIsystemfromavendorthatmeetsspecificsecurityrequirementsandthattheOTsupplieragreeswith.
DevelopanAISystem.BuildanAIsysteminhouse;thisenablescompletecontroloveritsdesignandimplementation.
CustomizeanExistingAISystem.WorkwithavendortotailortheirexistingAIsystemtomeetspecificOTsystemneeds.
Wherepossible,criticalinfrastructureownersandoperatorsshoulddemandAIsystemsthataresecurebydesignandwillnotnegativelyimpactOToperationandsafety.CriticalinfrastructureownersandoperatorsshouldconsultCISA’s
SecurebyDesign
webpageandresources,andthejointguidance
Secureby
Demand:PriorityConsiderationsforOperationalTechnologyOwnersandOperatorswhenSelectingDigital
Products
foropportunitiestoincorporatetheseprinciplesintothedesignoftheirAIandOTsystems.
1.3EducatePersonnelonAI
IntegratingAIintoOTenvironmentscanleadtopersonnelrelyingtoomuchonautomation,resultinginreducedhumanoversightandsituationalawareness.Thiscanhavesignificantconsequences,including:
DependencyRisksandSkillErosion.HeavyrelianceonAImaycauseOTpersonneltolosemanualskillsneededformanagingsystemsduringAIfailuresorsystemoutages.
SkillGaps.OTpersonnelmaymisinterpretAIoutputs,leadingtoincorrectactions;OTpersonnelmayalsolackexpertiseformanagingortroubleshootingAIsystemsiftheymalfunction.
4TheUKGovernment’s
CodeofPracticefortheCyberSecurityofAI
andits
technicalimplementationguide
alsoprovidescenario-basedcybersecuritymitigationadviceaccordingtothesecureAIsystemdevelopmentlifecycle.
PrinciplesfortheSecureIntegrationofArtificialIntelligenceinOperationalTechnologyTLP:CLEAR
CISA|ASD’sACSC|NSAAISC|FBI|CyberCentre|BSI|NCSC-NL|NCSC-NZ|NCSC-UK
Page11of25TLP:CLEAR
Criticalinfrastructureownersandoperatorsmaymitigatetheserisksbyfocusingonskilldevelopmentandcross-disciplinarycollaboration,suchas:
TrainingOTteamsonAIfundamentalsandthreatmodelingsoteamscaneffectivelyinterpretandvalidateAIoutputsandmaintainoperationalcompetenciesalongsideAIsystems—forexample,
trainingteamstousealternativesensors(e.g.,humansens
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年體外及體內(nèi)反搏裝置項目合作計劃書
- 腫瘤患者的自我管理
- 護理教育中的職業(yè)素養(yǎng)培養(yǎng)
- CRT患者活動與康復(fù)護理指導(dǎo)
- 護理人文關(guān)懷的婦產(chǎn)科護理
- 急產(chǎn)護理:分娩過程管理要點
- 秋季防曬知識要點
- 員工培訓(xùn)執(zhí)行力課件
- 燒傷創(chuàng)面護理技術(shù)詳解
- 吸氧課件開場白
- 醫(yī)院布草洗滌服務(wù)方案(技術(shù)方案)
- 游戲:看表情符號猜成語PPT
- 手術(shù)室醫(yī)療廢物的管理
- 普通機床主傳動系統(tǒng)的設(shè)計課程設(shè)計說明書
- 班組工程進度款申請表
- 四年級閱讀訓(xùn)練概括文章主要內(nèi)容(完美)
- JJG 1033-2007電磁流量計
- GB/T 629-1997化學(xué)試劑氫氧化鈉
- GB/T 37234-2018文件鑒定通用規(guī)范
- GB/T 2895-2008塑料聚酯樹脂部分酸值和總酸值的測定
- 水利工程監(jiān)理規(guī)劃78648
評論
0/150
提交評論