版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.如圖1,在直角坐標(biāo)系中直線與、軸的交點(diǎn)分別為,,且滿足.(1)求、的值;(2)若點(diǎn)的坐標(biāo)為且,求的值;(3)如圖2,點(diǎn)坐標(biāo)是,若以2個(gè)單位/秒的速度向下平移,同時(shí)點(diǎn)以1個(gè)單位/秒的速度向左平移,平移時(shí)間是秒,若點(diǎn)落在內(nèi)部(不包含三角形的邊),求的取值范圍.解析:(1),;(2)或;(3)【分析】(1)根據(jù)非負(fù)數(shù)和為0,則每一個(gè)非負(fù)數(shù)都是0,即可求出a,b的值;(2)設(shè)直線AB與直線x=1交于點(diǎn)N,可得N(1,5),根據(jù)S△ABM=S△AMN?S△BMN,即可表示出S△ABM,從而列出m的方程.(3)根據(jù)題意知,臨界狀態(tài)是點(diǎn)P落在OA和AB上,分別求出此時(shí)t的值,即可得出范圍.【詳解】(1)∵,,∴,解得:,(2)設(shè)直線與直線交于,設(shè)∵a=?4,b=4,∴A(?4,0),B(0,4),設(shè)直線AB的函數(shù)解析式為:y=kx+b,代入得,解得∴直線AB的函數(shù)解析式為:y=x+4,代入x=1得∵∴=×5×|5?m|?×1×|5?m|=2|5?m|,∵∴∴或解得:或,(3)當(dāng)點(diǎn)P在OA邊上時(shí),則2t=2,∴t=1,當(dāng)點(diǎn)P在AB邊上時(shí),如圖,過點(diǎn)P作PKx軸,AK⊥x軸交于K,則KP'=3?t,KA'=2t?2,∴3?t=2t?2,∴綜上所述:.【點(diǎn)睛】本題主要考查了平移的性質(zhì)、一般三角形面積的和差表示、以及非負(fù)數(shù)的性質(zhì)等知識(shí)點(diǎn),第(2)問中用絕對(duì)值來表示動(dòng)點(diǎn)構(gòu)成的線段長(zhǎng)度是正確解題的關(guān)鍵.2.在如圖所示的平面直角坐標(biāo)系中,A(1,3),B(3,1),將線段A平移至CD,C(m,-1),D(1,n)(1)m=_____,n=______(2)點(diǎn)P的坐標(biāo)是(c,0)①設(shè)∠ABP=,請(qǐng)寫出∠BPD和∠PDC之間的數(shù)量關(guān)系(用含的式子表示,若有多種數(shù)量關(guān)系,選擇一種加以說明)②當(dāng)三角形PAB的面積不小于3且不大于10,求點(diǎn)p的橫坐標(biāo)C的取值范圍(直接寫出答案即可)解析:(1)-1,-3.(2)①當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.當(dāng)點(diǎn)P在直線AB的上方時(shí),∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由題意,線段AB向左平移2個(gè)單位,向下平移4個(gè)單位得到線段CD,利用平移規(guī)律求解即可.(2)①分三種情形求解,如圖1中,當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.如圖2中,當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.如圖3中,當(dāng)點(diǎn)P在直線AB的上方時(shí),同法可證∠BPD+∠PDC=α.分別利用平行線的性質(zhì)求解即可.②求出點(diǎn)P在直線AB兩側(cè),△PAB的面積分別為3和10時(shí),m的值,即可判斷.【詳解】解:(1)由題意,線段AB向左平移2個(gè)單位,向下平移4個(gè)單位得到線段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案為:-1,-3.(2)如圖1中,當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.理由:過點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD-∠PDC=∠BPD-∠DPE=∠BPE=α.如圖2中,當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.理由:過點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD+∠PDC=∠BPD+∠DPE=∠BPE=α.如圖3中,當(dāng)點(diǎn)P在直線AB的上方時(shí),同法可證∠BPD+∠PDC=α.(3)如圖4中,過點(diǎn)B作BH⊥x軸于H,過點(diǎn)A作AT⊥BH交BH于點(diǎn)T,延長(zhǎng)AB交x軸于E.當(dāng)點(diǎn)P在直線AB的下方時(shí),S△PAB=S梯形ATHP-S△ABT-S△PBH=(2+3-m)?3-×2×2-?(3-m)?1=-m+4,當(dāng)△PAB的面積=3時(shí),-m+4=3,解得m=1,當(dāng)△PAB的面積=3時(shí),-m+4=10,解得m=-6,∵△ABT是等腰直角三角形,∴∠ABT=45°=∠HBE,∴BH=EH=1,∴E(4,0),根據(jù)對(duì)稱性可知,當(dāng)點(diǎn)P在直線AB的右側(cè)時(shí),當(dāng)△PAB的面積=3時(shí),m=7,當(dāng)△PAB的面積=3時(shí),m=14,觀察圖象可知,-6<m≤1或7≤m<14.【點(diǎn)睛】本題屬于三角形綜合題,考查了三角形的面積,平行線的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用分割法求三角形面積,學(xué)會(huì)尋找特殊位置解決問題,屬于中考??碱}型.3.如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),邊長(zhǎng)為2的正方形ABCD(點(diǎn)D與點(diǎn)O重合)和邊長(zhǎng)為4的正方形EFGH的邊CO和GH都在x軸上,且點(diǎn)H坐標(biāo)為(7,0).正方形ABCD以3個(gè)單位長(zhǎng)度/秒的速度沿著x軸向右運(yùn)動(dòng),記正方形ABCD和正方形EFGH重疊部分的面積為S,假設(shè)運(yùn)動(dòng)時(shí)間為t秒,且t<4.(1)點(diǎn)F的坐標(biāo)為;(2)如圖2,正方形ABCD向右運(yùn)動(dòng)的同時(shí),動(dòng)點(diǎn)P在線段FE上,以1個(gè)單位長(zhǎng)度/秒的速度從F到E運(yùn)動(dòng).連接AP,AE.①求t為何值時(shí),AP所在直線垂直于x軸;②求t為何值時(shí),S=S△APE.解析:(1)(3,4);(2)①t=時(shí),AP所在直線垂直于x軸;②當(dāng)t為或時(shí),S=S△APE.【分析】(1)根據(jù)直角坐標(biāo)系得出點(diǎn)F的坐標(biāo)即可;(2)①根據(jù)AP所在直線垂直于x軸,得出關(guān)于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標(biāo)系可得:F坐標(biāo)為:(3,4);故答案為:(3,4);(2)①要使AP所在直線垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時(shí),AP所在直線垂直于x軸;②由題意知,OH=7,所以當(dāng)時(shí),點(diǎn)D與點(diǎn)H重合,所以要分以下兩種情況討論:情況一:當(dāng)時(shí),GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當(dāng)時(shí),如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當(dāng)t為或時(shí),S=S△APE.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系中點(diǎn)的移動(dòng),一元一次方程的應(yīng)用等問題,理解題意,分類討論是解題關(guān)鍵.4.如圖,在下面直角坐標(biāo)系中,已知,,三點(diǎn),其中,,滿足關(guān)系式.(1)求,,的值;(2)如果在第二象限內(nèi)有一點(diǎn),請(qǐng)用含的式子表示四邊形的面積;(3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積與三角形的面積相等?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.解析:(1)a=2,b=3,c=4;(2)S四邊形ABOP=3-m;(3)存在,P(-3,).【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì),即可解答;(2)四邊形ABOP的面積=△APO的面積+△AOB的面積,即可解答;(3)存在,根據(jù)面積相等求出m的值,即可解答.【詳解】解:(1)由已知可得:a-2=0,b-3=0,c-4=0,解得:a=2,b=3,c=4;(2)∵a=2,b=3,c=4,∴A(0,2),B(3,0),C(3,4),∴OA=2,OB=3,∵S△ABO=×2×3=3,S△APO=×2×(-m)=-m,∴S四邊形ABOP=S△ABO+S△APO=3+(-m)=3-m(3)存在,∵S△ABC=×4×3=6,若S四邊形ABOP=S△ABC=3-m=6,則m=-3,∴存在點(diǎn)P(-3,)使S四邊形ABOP=S△ABC.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),解決本題的關(guān)鍵是根據(jù)非負(fù)數(shù)的性質(zhì)求出a,b,c.5.如圖:在四邊形ABCD中,A、B、C、D四個(gè)點(diǎn)的坐標(biāo)分別是:(-2,0)、(0,6)、(4,4)、(2,0)現(xiàn)將四邊形ABCD先向上平移1個(gè)單位,再向左平移2個(gè)單位,平移后的四邊形是A'B'C′D'(1)請(qǐng)畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點(diǎn)的坐標(biāo).(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo).(3)求四邊形ABCD的面積.解析:(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據(jù)圖形寫出對(duì)應(yīng)點(diǎn)的坐標(biāo)進(jìn)而得出答案;(2)利用平移規(guī)律進(jìn)而得出對(duì)應(yīng)點(diǎn)坐標(biāo)的變化規(guī)律:向上平移1個(gè)單位,縱坐標(biāo)加1;向左平移2個(gè)單位,橫坐標(biāo)減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進(jìn)而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點(diǎn)睛】此題主要考查了平移變換以及坐標(biāo)系內(nèi)四邊形面積求法,正確得出對(duì)應(yīng)點(diǎn)位置是解題關(guān)鍵.6.已知,在平面直角坐標(biāo)系中,AB⊥x軸于點(diǎn)B,點(diǎn)A滿足,平移線段AB使點(diǎn)A與原點(diǎn)重合,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C.(1)則a=,b=,點(diǎn)C坐標(biāo)為;(2)如圖1,點(diǎn)D(m,n)在線段BC上,求m,n滿足的關(guān)系式;(3)如圖2,E是線段OB上一動(dòng)點(diǎn),以O(shè)B為邊作∠BOG=∠AOB,交BC于點(diǎn)G,連CE交OG于點(diǎn)F,當(dāng)點(diǎn)E在線段OB上運(yùn)動(dòng)過程中,的值是否會(huì)發(fā)生變化?若變化請(qǐng)說明理由,若不變,請(qǐng)求出其值.解析:(1);(2);(3)不變,值為2.【分析】(1)根據(jù),即可得出a,b的值,再根據(jù)平移的性質(zhì)得出,因?yàn)辄c(diǎn)C在y軸負(fù)半軸,即可得出點(diǎn)C的坐標(biāo);(2)過點(diǎn)D分別作DM⊥x軸于點(diǎn)M,DN⊥y軸于點(diǎn)N,連接OD,在中用等面積法即可求出m和n的關(guān)系式;(3)分別過點(diǎn)E,F(xiàn)作EP∥OA,F(xiàn)Q∥OA分別交y軸于點(diǎn)P,點(diǎn)Q,根據(jù)平行線的性質(zhì),得出進(jìn)而得到的值.【詳解】(1)解:∵,∴∴∵且C在y軸負(fù)半軸上,∴,故填:;(2)如圖1,過點(diǎn)D分別作DM⊥x軸于點(diǎn)M,DN⊥y軸于點(diǎn)N,連接OD.∵AB⊥x軸于點(diǎn)B,且點(diǎn)A,D,C三點(diǎn)的坐標(biāo)分別為:∴,∴,又∵S△BOC=S△BOD+S△COD=OB×MD+OC×ND,∴;(3)解:的值不變,值為2.理由如下:如圖所示,分別過點(diǎn)E,F(xiàn)作EP∥OA,F(xiàn)Q∥OA分別交y軸于點(diǎn)P,點(diǎn)Q,∵線段OC是由線段AB平移得到,∴BC∥OA,又∵EP∥OA,∴EP∥BC,∴∠GCF=∠PEC,∵EP∥OA,∴∠AOE=∠OEP,∴∠OEC=∠OEP+∠PEC=∠AOE+∠GCF,同理:∠OFC=∠AOF+∠GCF,又∵∠AOB=∠BOG,∴∠OFC=2∠AOE+∠GCF,∴.【點(diǎn)睛】本題主要考查了非負(fù)數(shù)的性質(zhì),坐標(biāo)與圖形,平行線的判定與性質(zhì),以及平移的性質(zhì),解決問題的關(guān)鍵是作輔助線,運(yùn)用等面積法,角的和差關(guān)系以及平行線的性質(zhì)進(jìn)行求解.7.如圖,直線,點(diǎn)是、之間(不在直線,上)的一個(gè)動(dòng)點(diǎn).(1)如圖1,若與都是銳角,請(qǐng)寫出與,之間的數(shù)量關(guān)系并說明理由;(2)把直角三角形如圖2擺放,直角頂點(diǎn)在兩條平行線之間,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn),點(diǎn)在線段上,連接,有,求的值;(3)如圖3,若點(diǎn)是下方一點(diǎn),平分,平分,已知,求的度數(shù).解析:(1)見解析;(2);(3)75°【分析】(1)根據(jù)平行線的性質(zhì)、余角和補(bǔ)角的性質(zhì)即可求解.(2)根據(jù)平行線的性質(zhì)、對(duì)頂角的性質(zhì)和平角的定義解答即可.(3)根據(jù)平行線的性質(zhì)和角平分線的定義以及三角形內(nèi)角和解答即可.【詳解】解:(1)∠C=∠1+∠2,證明:過C作l∥MN,如下圖所示,∵l∥MN,∴∠4=∠2(兩直線平行,內(nèi)錯(cuò)角相等),∵l∥MN,PQ∥MN,∴l(xiāng)∥PQ,∴∠3=∠1(兩直線平行,內(nèi)錯(cuò)角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)設(shè)BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【點(diǎn)睛】本題考查了平行線的性質(zhì)、余角和補(bǔ)角的性質(zhì),解題的關(guān)鍵是根據(jù)平行找出角度之間的關(guān)系.8.已知:直線AB∥CD,M,N分別在直線AB,CD上,H為平面內(nèi)一點(diǎn),連HM,HN.(1)如圖1,延長(zhǎng)HN至G,∠BMH和∠GND的角平分線相交于點(diǎn)E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線相交于點(diǎn)E.①請(qǐng)直接寫出∠MEN與∠MHN的數(shù)量關(guān)系:;②作MP平分∠AMH,NQ∥MP交ME的延長(zhǎng)線于點(diǎn)Q,若∠H=140°,求∠ENQ的度數(shù).(可直接運(yùn)用①中的結(jié)論)解析:(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點(diǎn)E作EP∥AB交MH于點(diǎn)Q,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等即可得證.(2)①過點(diǎn)H作GI∥AB,利用(1)中結(jié)論2∠MEN﹣∠MHN=180°,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進(jìn)而用等量代換得出2∠MEN+∠MHN=360°.②過點(diǎn)H作HT∥MP,由①的結(jié)論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線性質(zhì)得∠ENQ+∠ENH+∠NHT=180°,由角平分線性質(zhì)及鄰補(bǔ)角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數(shù).【詳解】解:(1)證明:過點(diǎn)E作EP∥AB交MH于點(diǎn)Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線平行,內(nèi)錯(cuò)角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過點(diǎn)H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結(jié)論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過點(diǎn)H作HT∥MP.如答圖2∵M(jìn)P∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).∵M(jìn)P平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的性質(zhì),鄰補(bǔ)角,等量代換,角之間的數(shù)量關(guān)系運(yùn)算,輔助線的作法,正確作出輔助線是解題的關(guān)鍵,本題綜合性較強(qiáng).9.閱讀下面材料:小亮同學(xué)遇到這樣一個(gè)問題:已知:如圖甲,ABCD,E為AB,CD之間一點(diǎn),連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請(qǐng)你幫他把證明過程補(bǔ)充完整.證明:過點(diǎn)E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請(qǐng)你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點(diǎn)A,B在直線a上,點(diǎn)C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點(diǎn)E.①如圖1,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),設(shè)∠ABC=α,∠ADC=β,請(qǐng)你求出∠BED的度數(shù)(用含有α,β的式子表示).解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數(shù);②如圖2,過點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過點(diǎn)E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點(diǎn)E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過點(diǎn)E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).10.已知直線,點(diǎn)P為直線、所確定的平面內(nèi)的一點(diǎn).(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點(diǎn)E在射線上,過點(diǎn)E作,作,點(diǎn)G在直線上,作的平分線交于點(diǎn)H,若,,求的度數(shù).解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點(diǎn)P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點(diǎn)睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.11.已知:AB∥CD,截線MN分別交AB、CD于點(diǎn)M、N.(1)如圖①,點(diǎn)B在線段MN上,設(shè)∠EBM=α°,∠DNM=β°,且滿足+(β﹣60)2=0,求∠BEM的度數(shù);(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長(zhǎng)線于點(diǎn)F;請(qǐng)寫出∠DEF與∠CDF之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,當(dāng)點(diǎn)P在射線NT上運(yùn)動(dòng)時(shí),∠DCP與∠BMT的平分線交于點(diǎn)Q,則∠Q與∠CPM的比值為(直接寫出答案).解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行線的性質(zhì)可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數(shù)量可求解;(3)由平行線的性質(zhì)和外角性質(zhì)可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過點(diǎn)E作直線EH∥AB,∵DF平分∠CDE,∴設(shè)∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設(shè)MQ與CD交于點(diǎn)E,∵M(jìn)Q平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì),準(zhǔn)確計(jì)算是解題的關(guān)鍵.12.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點(diǎn)睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問題的關(guān)鍵.13.綜合與實(shí)踐課上,同學(xué)們以“一個(gè)直角三角形和兩條平行線”為背景開展數(shù)學(xué)活動(dòng),如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學(xué)們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請(qǐng)說明理由.(3)如圖3,若∠A=30°,平分,此時(shí)發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請(qǐng)寫出與的數(shù)量關(guān)系并說明理由.解析:(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進(jìn)而得出結(jié)論;(3)過點(diǎn)C
作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過點(diǎn)B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過點(diǎn)C
作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點(diǎn)睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識(shí);本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.14.如圖,已知直線,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在點(diǎn)的右側(cè),平分平分,直線交于點(diǎn).(1)若時(shí),則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動(dòng),其他條件不變,請(qǐng)畫出相應(yīng)圖形,并直接寫出的度數(shù).(用含的代數(shù)式表示)解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點(diǎn)E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯(cuò)角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當(dāng)點(diǎn)B在點(diǎn)A左側(cè)和當(dāng)點(diǎn)B在點(diǎn)A右側(cè),再分三種情況,討論,分別過點(diǎn)E作EF∥AB,由角平分線的定義,平行線的性質(zhì),以及角的和差計(jì)算即可.【詳解】解:(1)當(dāng)n=20時(shí),∠ABC=40°,過E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)日常安全培訓(xùn)課件
- 2025年農(nóng)業(yè)技術(shù)推廣員資格考試《農(nóng)業(yè)經(jīng)濟(jì)學(xué)》備考題庫庫及答案解析
- 2025四川宜賓市興文生態(tài)環(huán)境監(jiān)測(cè)站見習(xí)崗位募集計(jì)劃2人考試備考題庫及答案解析
- 北京金融街資產(chǎn)管理有限公司2026校園招聘筆試參考題庫及答案解析
- 2026年廣西單招護(hù)理專業(yè)中職生技能操作模擬題含答案含靜脈輸液規(guī)范
- 2026年寧波單招城市軌道交通運(yùn)營(yíng)管理題庫含答案
- 2025海南航空紀(jì)委書記崗位招聘1人筆試參考題庫及答案解析
- 2025年安康市漢濱區(qū)某文化傳播責(zé)任有限公司招聘(10人)筆試備考試題及答案解析
- 牛津樹自然拼讀課件
- 2026年西安第四聯(lián)合職業(yè)中學(xué)教師招聘筆試備考題庫及答案解析
- 貨物運(yùn)輸安全管理制度
- 《電子工業(yè)全光網(wǎng)絡(luò)工程技術(shù)規(guī)范》
- 3 面粉碼垛機(jī)器人的結(jié)構(gòu)設(shè)計(jì)
- 腦梗塞所致精神障礙病人護(hù)理
- 護(hù)理組長(zhǎng)競(jìng)聘演講
- 露天煤礦安全用電培訓(xùn)
- 股骨粗隆間骨折分型培訓(xùn)課件
- 24年一年級(jí)上冊(cè)語文期末復(fù)習(xí)21天沖刺計(jì)劃(每日5道題)
- 靜療工作總結(jié)
- 2024-2025學(xué)年吉安市泰和縣六上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析
- JJF 1064-2024坐標(biāo)測(cè)量機(jī)校準(zhǔn)規(guī)范
評(píng)論
0/150
提交評(píng)論