(完整版)七年級下冊實數(shù)數(shù)學(xué)試題及答案(一)培優(yōu)試題_第1頁
(完整版)七年級下冊實數(shù)數(shù)學(xué)試題及答案(一)培優(yōu)試題_第2頁
(完整版)七年級下冊實數(shù)數(shù)學(xué)試題及答案(一)培優(yōu)試題_第3頁
(完整版)七年級下冊實數(shù)數(shù)學(xué)試題及答案(一)培優(yōu)試題_第4頁
(完整版)七年級下冊實數(shù)數(shù)學(xué)試題及答案(一)培優(yōu)試題_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

一、選擇題1.對一組數(shù)的一次操作變換記為,定義其變換法則如下:,且規(guī)定(為大于的整數(shù)),如,,,,則().A. B. C. D.2.一列數(shù),,,……,其中=﹣1,=,=,……,=,則×××…×=()A.1 B.-1 C.2017 D.-20173.如圖,數(shù)軸上點表示的數(shù)可能是()A. B. C. D.4.若實數(shù)p,q,m,n在數(shù)軸上的對應(yīng)點的位置如圖所示,且滿足,則絕對值最小的數(shù)是()A.p B.q C.m D.n5.各個數(shù)位上數(shù)字的立方和等于其本身的三位數(shù)叫做“水仙花數(shù)”.例如153是“水仙花數(shù)”,因為.以下四個數(shù)中是“水仙花數(shù)”的是()A.135 B.220 C.345 D.4076.下列說法中:①0是最小的整數(shù);②有理數(shù)不是正數(shù)就是負(fù)數(shù);③﹣不僅是有理數(shù),而且是分?jǐn)?shù);④是無限不循環(huán)小數(shù),所以不是有理數(shù);⑤無限小數(shù)不一定都是有理數(shù);⑥正數(shù)中沒有最小的數(shù),負(fù)數(shù)中沒有最大的數(shù);⑦非負(fù)數(shù)就是正數(shù);⑧正整數(shù)、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱為有理數(shù);其中錯誤的說法的個數(shù)為()A.7個 B.6個 C.5個 D.4個7.對于任意不相等的兩個實數(shù)a,b,定義運算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值為()A.﹣40 B.﹣32 C.18 D.108.設(shè)n為正整數(shù),且n<<n+1,則n的值為()A.5 B.6 C.7 D.89.已知(取的末位數(shù)字),(取的末位數(shù)字),(取的末位數(shù)字),…,則的值為()A.4036 B.4038 C.4042 D.404410.如圖,數(shù)軸上O、A、B、C四點,若數(shù)軸上有一點M,點M所表示的數(shù)為,且,則關(guān)于M點的位置,下列敘述正確的是()A.在A點左側(cè) B.在線段AC上 C.在線段OC上 D.在線段OB上二、填空題11.新定義一種運算,其法則為,則__________12.對于任意有理數(shù)a,b,規(guī)定一種新的運算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.則(﹣2)⊙6的值為_____13.若|x|=3,y2=4,且x>y,則x﹣y=_____.14.對于三個數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.15.如果表示a、b的實數(shù)的點在數(shù)軸上的位置如圖所示,那么化簡|a﹣b|+的結(jié)果是_____.16.現(xiàn)定義一種新運算:對任意有理數(shù)a、b,都有a?b=a2﹣b,例如3?2=32﹣2=7,2?(﹣1)=_____.17.如圖所示,數(shù)軸上點A表示的數(shù)是-1,0是原點以AO為邊作正方形AOBC,以A為圓心、AB線段長為半徑畫半圓交數(shù)軸于兩點,則點表示的數(shù)是___________,點表示的數(shù)是___________.18.若+(y+1)2=0,則(x+y)3=_____.19.已知與互為相反數(shù),則的值是____.20.已知M是滿足不等式的所有整數(shù)的和,N是的整數(shù)部分,則的平方根為__________.三、解答題21.我們知道,正整數(shù)按照能否被2整除可以分成兩類:正奇數(shù)和正偶數(shù),小華受此啟發(fā),按照一個正整數(shù)被3除的余數(shù)把正整數(shù)分成了三類:如果一個正整數(shù)被3除余數(shù)為1,則這個正整數(shù)屬于A類,例如1,4,7等;如果一個正整數(shù)被3除余數(shù)為2,則這個正整數(shù)屬于B類,例如2,5,8等;如果一個正整數(shù)被3整除,則這個正整數(shù)屬于C類,例如3,6,9等.(1)2020屬于類(填A(yù),B或C);(2)①從A類數(shù)中任取兩個數(shù),則它們的和屬于類(填A(yù),B或C);②從A、B類數(shù)中任取一數(shù),則它們的和屬于類(填A(yù),B或C);③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們都加起來,則最后的結(jié)果屬于類(填A(yù),B或C);(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),把它們都加起來,若最后的結(jié)果屬于C類,則下列關(guān)于m,n的敘述中正確的是(填序號).①屬于C類;②屬于A類;③,屬于同一類.22.若一個四位數(shù)t的前兩位數(shù)字相同且各位數(shù)字均不為0,則稱這個數(shù)為“前介數(shù)”;若把這個數(shù)的個位數(shù)字放到前三位數(shù)字組成的數(shù)的前面組成一個新的四位數(shù),則稱這個新的四位數(shù)為“中介數(shù)”;記一個“前介數(shù)”t與它的“中介數(shù)”的差為P(t).例如,5536前兩位數(shù)字相同,所以5536為“前介數(shù)”;則6553就為它的“中介數(shù)”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個“前介數(shù)”t,P(t)一定能被9整除.(3)若一個千位數(shù)字為2的“前介數(shù)”t能被6整除,它的“中介數(shù)”能被2整除,請求出滿足條件的P(t)的最大值.23.對非負(fù)實數(shù)“四舍五入”到各位的值記為.即:當(dāng)為非負(fù)整數(shù)時,如果,則;反之,當(dāng)為非負(fù)整數(shù)時,如果,則.例如:,.(1)計算:;;(2)①求滿足的實數(shù)的取值范圍,②求滿足的所有非負(fù)實數(shù)的值;(3)若關(guān)于的方程有正整數(shù)解,求非負(fù)實數(shù)的取值范圍.24.閱讀下列材料:小明為了計算的值,采用以下方法:設(shè)①則②②-①得,請仿照小明的方法解決以下問題:(1)________;(2)_________;(3)求的和(,是正整數(shù),請寫出計算過程).25.對數(shù)運算是高中常用的一種重要運算,它的定義為:如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作:x=logaN,例如:32=9,則log39=2,其中a=10的對數(shù)叫做常用對數(shù),此時log10N可記為lgN.當(dāng)a>0,且a≠1,M>0,N>0時,loga(M?N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)計算:(lg2)2+lg2?1g5+1g5﹣2018=(直接寫答案)26.下列等式:,,,將以上三個等式兩邊分別相加得:.(1)觀察發(fā)現(xiàn):__________.(2)初步應(yīng)用:利用(1)的結(jié)論,解決以下問題“①把拆成兩個分子為1的正的真分?jǐn)?shù)之差,即;②把拆成兩個分子為1的正的真分?jǐn)?shù)之和,即;(3)定義“”是一種新的運算,若,,,求的值.27.定義:如果,那么稱b為n的布谷數(shù),記為.例如:因為,所以,因為,所以.(1)根據(jù)布谷數(shù)的定義填空:g(2)=________________,g(32)=___________________.(2)布谷數(shù)有如下運算性質(zhì):若m,n為正整數(shù),則,.根據(jù)運算性質(zhì)解答下列各題:①已知,求和的值;②已知.求和的值.28.(概念學(xué)習(xí))規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”,一般地,把n個a(a≠0)記作a?,讀作“a的圈n次方”.(初步探究)(1)直接寫出計算結(jié)果:2③=,(﹣)⑤=;(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?(1)試一試:仿照上面的算式,將下列運算結(jié)果直接寫成乘方的形式.(﹣3)④=;5⑥=;(﹣)⑩=.(2)想一想:將一個非零有理數(shù)a的圈n次方寫成乘方的形式等于;29.閱讀材料:求的值.解:設(shè)①,將等式①的兩邊同乘以2,得②,用②-①得,即.即.請仿照此法計算:(1)請直接填寫的值為______;(2)求值;(3)請直接寫出的值.30.給定一個十進(jìn)制下的自然數(shù),對于每個數(shù)位上的數(shù),求出它除以的余數(shù),再把每一個余數(shù)按照原來的數(shù)位順序排列,得到一個新的數(shù),定義這個新數(shù)為原數(shù)的“模二數(shù)”,記為.如.對于“模二數(shù)”的加法規(guī)定如下:將兩數(shù)末位對齊,從右往左依次將相應(yīng)數(shù)位.上的數(shù)分別相加,規(guī)定:與相加得;與相加得與相加得,并向左邊一位進(jìn).如的“模二數(shù)”相加的運算過程如下圖所示.根據(jù)以上材料,解決下列問題:(1)的值為______,的值為_(2)如果兩個自然數(shù)的和的“模二數(shù)”與它們的“模二數(shù)”的和相等,則稱這兩個數(shù)“模二相加不變”.如,因為,所以,即與滿足“模二相加不變”.①判斷這三個數(shù)中哪些與“模二相加不變”,并說明理由;②與“模二相加不變”的兩位數(shù)有______個【參考答案】***試卷處理標(biāo)記,請不要刪除一、選擇題1.D解析:D【詳解】因為,,,,,所以,,所以,故選D.2.B解析:B【詳解】因為=﹣1,所以=,=,=,通過觀察可得:,,,……的值按照﹣1,,三個數(shù)值為一周期循環(huán),將2017除以3可得672余1,所以的值是第673個周期中第一個數(shù)值﹣1,因為每個周期三個數(shù)值的乘積為:,所以×××…×=故選B.3.D解析:D【分析】先對四個選項中的無理數(shù)進(jìn)行估算,再根據(jù)P點的位置即可得出結(jié)果.【詳解】解:∵1<<2,=2,3<<4,2<<3,∴根據(jù)點P在數(shù)軸上的位置可知:點P表示的數(shù)可能是,故選D.【點睛】本題主要考查了無理數(shù)的估算,能夠正確估算出無理數(shù)的范圍是解決本題的關(guān)鍵.4.C解析:C【分析】根據(jù),并結(jié)合數(shù)軸可知原點在q和m之間,且離m點最近,即可求解.【詳解】解:∵結(jié)合數(shù)軸可得:,即原點在q和m之間,且離m點最近,∴絕對值最小的數(shù)是m,故選:C.【點睛】本題考查實數(shù)與數(shù)軸,解題的關(guān)鍵是明確數(shù)軸的特點,利用數(shù)形結(jié)合的思想解答.5.D解析:D【分析】分別算出某數(shù)各個數(shù)位上數(shù)字的立方和,看其是否等于某數(shù)本身,若等于即為“水仙花數(shù)”,若不等于,即不是“水仙花數(shù)”.【詳解】解:∵,∴A不是“水仙花數(shù)”;∵,∴B不是“水仙花數(shù)”;∵,∴C不是“水仙花數(shù)”;∵,∴D是“水仙花數(shù)”;故選D.【點睛】本題考查新定義下的實數(shù)運算,正確理解題目所給概念并熟練應(yīng)用實數(shù)運算法則去完成有關(guān)計算是解題關(guān)鍵.6.B解析:B【分析】根據(jù)有理數(shù)的分類依此作出判斷,即可得出答案.【詳解】解:①沒有最小的整數(shù),所以原說法錯誤;②有理數(shù)包括正數(shù)、0和負(fù)數(shù),所以原說法錯誤;③﹣是無理數(shù),所以原說法錯誤;④是無限循環(huán)小數(shù),是分?jǐn)?shù),所以是有理數(shù),所以原說法錯誤;⑤無限小數(shù)不都是有理數(shù),所以原說法正確;⑥正數(shù)中沒有最小的數(shù),負(fù)數(shù)中沒有最大的數(shù),所以原說法正確;⑦非負(fù)數(shù)就是正數(shù)和0,所以原說法錯誤;⑧正整數(shù)、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)和0統(tǒng)稱為有理數(shù),所以原說法錯誤;故其中錯誤的說法的個數(shù)為6個.故選:B.【點睛】本題考查了有理數(shù)的分類,認(rèn)真掌握正數(shù)、負(fù)數(shù)、整數(shù)、分?jǐn)?shù)、正有理數(shù)、負(fù)有理數(shù)、非負(fù)數(shù)的定義與特點是解題的關(guān)鍵.注意整數(shù)和正數(shù)的區(qū)別,注意0是整數(shù),但不是正數(shù).7.D解析:D【分析】直接利用題中的新定義給出的運算公式計算得出答案.【詳解】解:(-5)※4=(﹣5)2﹣42+1=10.故選:D.【點睛】本題主要考查了實數(shù)運算,以及定義新運算,正確運用新定義給出的運算公式是解題關(guān)鍵.8.D解析:D【分析】首先得出<<,進(jìn)而求出的取值范圍,即可得出n的值.【詳解】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故選;D.【點睛】此題主要考查了估算無理數(shù),得出<<是解題關(guān)鍵.9.C解析:C【分析】先計算部分?jǐn)?shù)的乘積,觀察運算結(jié)果,發(fā)相規(guī)律,每運算5次后結(jié)果重復(fù)出現(xiàn),求出++++和,再求2021次運算重復(fù)的次數(shù),用除數(shù)5,商和余數(shù)表示2021=5×404+1,說明重復(fù)404次和的結(jié)果,(++++)×10+2計算結(jié)果即可.【詳解】解:,,,,,,,,,,,每5次運算一循環(huán),++++=2+6+2+0+0=10,2021=5×404+1,=10×404+2=4040+2=4042.故選:C.【點睛】本題考查新定義運算,讀懂題目的含義與要求,掌握運算的方法,觀察部分運算結(jié)果,從中找出規(guī)律,用規(guī)律解決問題是解題關(guān)鍵.10.D解析:D【分析】根據(jù)A、C、O、B四點在數(shù)軸上的位置以及絕對值的定義即可得出答案.【詳解】∵|m-5|表示點M與5表示的點B之間的距離,|m?c|表示點M與數(shù)c表示的點C之間的距離,|m-5|=|m?c|,∴MB=MC.∴點M在線段OB上.故選:D.【點睛】本題考查的是實數(shù)與數(shù)軸,熟知實數(shù)與數(shù)軸上各點是一一對應(yīng)的關(guān)系是解答此題的關(guān)鍵.二、填空題11.【分析】按照題干定義的運算法則,列出算式,再按照同底冪除法運算法則計算可得.【詳解】故答案為:【點睛】本題考查定義新運算,解題關(guān)鍵是根據(jù)題干定義的運算規(guī)則,轉(zhuǎn)化為我們熟知的形式進(jìn)行求解解析:【分析】按照題干定義的運算法則,列出算式,再按照同底冪除法運算法則計算可得.【詳解】故答案為:【點睛】本題考查定義新運算,解題關(guān)鍵是根據(jù)題干定義的運算規(guī)則,轉(zhuǎn)化為我們熟知的形式進(jìn)行求解.12.-9【分析】直接利用已知運算法則計算得出答案.【詳解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案為﹣9.【點睛】此題考察新定義形式的有理數(shù)計算,解析:-9【分析】直接利用已知運算法則計算得出答案.【詳解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案為﹣9.【點睛】此題考察新定義形式的有理數(shù)計算,正確理解題意是解題的關(guān)鍵,依據(jù)題意正確列代數(shù)式計算即可.13.1或5.【分析】根據(jù)題意,利用絕對值的代數(shù)意義及平方根定義求出x與y的值,代入原式計算即可得到結(jié)果.【詳解】解:根據(jù)題意得:x=3,y=2或x=3,y=﹣2,則x﹣y=1或5.故答案為1解析:1或5.【分析】根據(jù)題意,利用絕對值的代數(shù)意義及平方根定義求出x與y的值,代入原式計算即可得到結(jié)果.【詳解】解:根據(jù)題意得:x=3,y=2或x=3,y=﹣2,則x﹣y=1或5.故答案為1或5.【點睛】此題考查了代數(shù)式求值,熟練掌握運算法則是解本題的關(guān)鍵.14.或【詳解】【分析】根據(jù)題中的運算規(guī)則得到M{3,2x+1,4x-1}=1+2x,然后再根據(jù)min{2,-x+3,5x}的規(guī)則分情況討論即可得.【詳解】M{3,2x+1,4x-1}==2x+1解析:或【詳解】【分析】根據(jù)題中的運算規(guī)則得到M{3,2x+1,4x-1}=1+2x,然后再根據(jù)min{2,-x+3,5x}的規(guī)則分情況討論即可得.【詳解】M{3,2x+1,4x-1}==2x+1,∵M(jìn){3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三種情況:①2x+1=2,x=,此時min{2,-x+3,5x}=min{2,,}=2,成立;②2x+1=-x+3,x=,此時min{2,-x+3,5x}=min{2,,}=2,不成立;③2x+1=5x,x=,此時min{2,-x+3,5x}=min{2,,}=,成立,∴x=或,故答案為或.【點睛】本題考查了閱讀理解題,一元一次方程的應(yīng)用,分類討論思想的運用等,解決問題的關(guān)鍵是讀懂題意,依題意分情況列出一元一次方程進(jìn)行求解.15.﹣2b【詳解】由題意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案為﹣2b.點睛:本題主要考查了二次根式和絕對解析:﹣2b【詳解】由題意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案為﹣2b.點睛:本題主要考查了二次根式和絕對值的性質(zhì)與化簡.特別因為a.b都是數(shù)軸上的實數(shù),注意符號的變換.16.5【解析】利用題中的新定義可得:2?(﹣1)=4﹣(﹣1)=4+1=5.故答案為:5.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.解析:5【解析】利用題中的新定義可得:2?(﹣1)=4﹣(﹣1)=4+1=5.故答案為:5.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.17...【分析】首先利用勾股定理計算出的長,再根據(jù)題意可得,然后根據(jù)數(shù)軸上個點的位置計算出表示的數(shù)即可.【詳解】解:點表示的數(shù)是,是原點,,,以為圓心、長為半徑畫弧,,解析:..【分析】首先利用勾股定理計算出的長,再根據(jù)題意可得,然后根據(jù)數(shù)軸上個點的位置計算出表示的數(shù)即可.【詳解】解:點表示的數(shù)是,是原點,,,以為圓心、長為半徑畫弧,,點表示的數(shù)是,點表示的數(shù)是,故答案為:;.【點睛】本題考查了數(shù)軸的性質(zhì),以及應(yīng)用數(shù)形結(jié)合的方法來解決問題.18.0【分析】根據(jù)非負(fù)數(shù)的性質(zhì)列式求出x、y,然后代入代數(shù)式進(jìn)行計算即可得解.【詳解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)解析:0【分析】根據(jù)非負(fù)數(shù)的性質(zhì)列式求出x、y,然后代入代數(shù)式進(jìn)行計算即可得解.【詳解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)3=0.故答案為:0.【點睛】本題考查了非負(fù)數(shù)的性質(zhì).解題的關(guān)鍵是掌握非負(fù)數(shù)的性質(zhì):幾個非負(fù)數(shù)的和為0時,這幾個非負(fù)數(shù)都為0.19.【分析】首先根據(jù)與互為相反數(shù),可得+=0,進(jìn)而得出,然后用含的代數(shù)式表示,再代入求值即可.【詳解】解:∵與互為相反數(shù),∴+=0,∴∴∴.故答案為:.【點睛】本題主要考查了實數(shù)解析:【分析】首先根據(jù)與互為相反數(shù),可得+=0,進(jìn)而得出,然后用含的代數(shù)式表示,再代入求值即可.【詳解】解:∵與互為相反數(shù),∴+=0,∴∴∴.故答案為:.【點睛】本題主要考查了實數(shù)的運算以及相反數(shù),根據(jù)相反數(shù)的概念求得與之間的關(guān)系是解題關(guān)鍵.20.±3【分析】先通過估算確定M、N的值,再求M+N的平方根.【詳解】解:∵,∴,∵,∴,∵,∴,∴a的整數(shù)值為:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通過估算確定M、N的值,再求M+N的平方根.【詳解】解:∵,∴,∵,∴,∵,∴,∴a的整數(shù)值為:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7,M+N=9,9的平方根是±3;故答案為:±3.【點睛】本題考查了算術(shù)平方根的估算,用“夾逼法”估算算術(shù)平方根是解題關(guān)鍵.三、解答題21.(1)A;(2)①B;②C;③B;(3)①③.【分析】(1)計算,結(jié)合計算結(jié)果即可進(jìn)行判斷;(2)①從A類數(shù)中任取兩個數(shù)進(jìn)行計算,即可求解;②從A、B兩類數(shù)中任取兩個數(shù)進(jìn)行計算,即可求解;③根據(jù)題意,從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,再除以3,即可得到答案;(3)根據(jù)m,n的余數(shù)之和,舉例,觀察即可判斷.【詳解】解:(1)根據(jù)題意,∵,∴2020被3除余數(shù)為1,屬于A類;故答案為:A.(2)①從A類數(shù)中任取兩個數(shù),如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴兩個A類數(shù)的和被3除余數(shù)為2,則它們的和屬于B類;②從A、B類數(shù)中任取一數(shù),與①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴從A、B類數(shù)中任取一數(shù),則它們的和屬于C類;③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,則,∴,∴余數(shù)為2,屬于B類;故答案為:①B;②C;③B.(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),余數(shù)之和為:m×1+n×2=m+2n,∵最后的結(jié)果屬于C類,∴m+2n能被3整除,即m+2n屬于C類,①正確;②若m=1,n=1,則|mn|=0,不屬于B類,②錯誤;③觀察可發(fā)現(xiàn)若m+2n屬于C類,m,n必須是同一類,③正確;綜上,①③正確.故答案為:①③.【點睛】本題考查了新定義的應(yīng)用和有理數(shù)的除法,解題的關(guān)鍵是熟練掌握新定義進(jìn)行解答.22.(1)-3006,990;(2)見解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據(jù)“前介數(shù)”t與它的“中介數(shù)”的差為P(t)的定義求解即可;(2)設(shè)“前介數(shù)”為且a、b、c均不為0的整數(shù),即1a、b、c,根據(jù)定義得到P(t)=,則P(t)一定能被9整除;(3)設(shè)“前介數(shù)”為,根據(jù)題意得到能被3整除,且b只能取2,4,6,8中的其中一個數(shù);對應(yīng)的“中介數(shù)”是,得到a只能取2,4,6,8中的其中一個數(shù),計算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數(shù)”,其對應(yīng)的“中介數(shù)”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數(shù)”,其對應(yīng)的“中介數(shù)”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設(shè)“前介數(shù)”為且a、b、c均為不為0的整數(shù),即1a、b、c,∴,又對應(yīng)的“中介數(shù)”是,∴P(t)=,∵a、b、c均不為0的整數(shù),∴為整數(shù),∴P(t)一定能被9整除;(3)證明:設(shè)“前介數(shù)”為且即1a、b,a、b均為不為0的整數(shù),∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數(shù),且能被3整除,又1,∴b只能取2,4,6,8中的其中一個數(shù),又對應(yīng)的“中介數(shù)”是,且該“中介數(shù)”能被2整除,∴為偶數(shù),又1,∴a只能取2,4,6,8中的其中一個數(shù),∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時,且14不能被3整除,不符合題意,舍去;②的最大值為6,的最小值仍為2,但此時,能被3整除,且P(t)=2262-2226=36;③的最大值仍為8,的最小值為4,但此時,且16不能被3整除,不符合題意,舍去;其他情況,減少,增大,則P(t)減少,∴滿足條件的P(t)的最大值是P(2262)=36.【點睛】本題考查用新定義解題,根據(jù)新定義,表示出“前介數(shù)”,與其對應(yīng)的“中介數(shù)”是求解本題的關(guān)鍵.本題中運用到的分類討論思想是重要一種數(shù)學(xué)解題思想方法.23.(1)2,3(2)①②(3)【分析】(1)根據(jù)新定義的運算規(guī)則進(jìn)行計算即可;(2)①根據(jù)新定義的運算規(guī)則即可求出實數(shù)的取值范圍;②根據(jù)新定義的運算規(guī)則和為整數(shù),即可求出所有非負(fù)實數(shù)的值;(3)先解方程求得,再根據(jù)方程的解是正整數(shù)解,即可求出非負(fù)實數(shù)的取值范圍.【詳解】(1)2;3;(2)①∵∴解得;②∵∴解得∵為整數(shù)∴故所有非負(fù)實數(shù)的值有;(3)∵方程的解為正整數(shù)∴或2①當(dāng)時,是方程的增根,舍去②當(dāng)時,.【點睛】本題考查了新定義下的運算問題,掌握新定義下的運算規(guī)則是解題的關(guān)鍵.24.(1);(2);(3)【分析】(1)設(shè)式子等于s,將方程兩邊都乘以2后進(jìn)行計算即可;(2)設(shè)式子等于s,將方程兩邊都乘以3,再將兩個方程相減化簡后得到答案;(3)設(shè)式子等于s,將方程兩邊都乘以a后進(jìn)行計算即可.【詳解】(1)設(shè)s=①,∴2s=②,②-①得:s=,故答案為:;(2)設(shè)s=①,∴3s=②,②-①得:2s=,∴,故答案為:;(3)設(shè)s=①,∴as=②,②-①得:(a-1)s=,∴s=.【點睛】此題考查代數(shù)式的規(guī)律計算,能正確理解已知的代數(shù)式的運算規(guī)律是難點,依據(jù)規(guī)律對于每個式子變形計算是關(guān)鍵.25.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根據(jù)對數(shù)的定義,得出x2=4,求解即可;(Ⅱ)根據(jù)對數(shù)的定義求解即;;(Ⅲ)根據(jù)loga(M?N)=logaM+logaN求解即可.【詳解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴l(xiāng)og28=3,故答案為3;(Ⅲ)解:(lg2)2+lg2?1g5+1g5﹣2018=lg2?(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案為-2017.【點睛】本題主要考查同底數(shù)冪的乘法,有理數(shù)的乘方,是一道關(guān)于新定義運算的題目,解答本題的關(guān)鍵是理解給出的對數(shù)的定義.26.(1);;(2)①;②;(3).【分析】(1)利用材料中的“拆項法”解答即可;(2)①先變形為,再利用(1)中的規(guī)律解題;②先變形為,再逆用分?jǐn)?shù)的加法法則即可分解;(3)按照定義“”法則表示出,再利用(1)中的規(guī)律解題即可.【詳解】解:(1)觀察發(fā)現(xiàn):,===;故答案是:;.(2)初步應(yīng)用:①=;②;故答案是:;.(3)由定義可知:====.故的值為.【點睛】考查了有理數(shù)運算中的規(guī)律型問題:數(shù)字的變化規(guī)律,有理數(shù)的混合運算.本題是一道找規(guī)律的題目,要求學(xué)生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題.27.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根據(jù)布谷數(shù)的定義把2和32化為底數(shù)為2的冪即可得出答案;(2)①根據(jù)布谷數(shù)的運算性質(zhì),g(14)=g(2×7)=g(2)+g(7),,再代入數(shù)值可得解;②根據(jù)布谷數(shù)的運算性質(zhì),先將兩式化為,,再代入求解.【詳解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案為1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案為3.807,0.807;②∵.∴;.【點睛】本題考查有理數(shù)的乘方運算,新定義;能夠?qū)⑿露x的運算轉(zhuǎn)化為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論