2020-2021中考數(shù)學(xué)易錯題專題訓(xùn)練-平行四邊形練習(xí)題附詳細(xì)答案_第1頁
2020-2021中考數(shù)學(xué)易錯題專題訓(xùn)練-平行四邊形練習(xí)題附詳細(xì)答案_第2頁
2020-2021中考數(shù)學(xué)易錯題專題訓(xùn)練-平行四邊形練習(xí)題附詳細(xì)答案_第3頁
2020-2021中考數(shù)學(xué)易錯題專題訓(xùn)練-平行四邊形練習(xí)題附詳細(xì)答案_第4頁
2020-2021中考數(shù)學(xué)易錯題專題訓(xùn)練-平行四邊形練習(xí)題附詳細(xì)答案_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2020-2021中考數(shù)學(xué)易錯題專題訓(xùn)練-平行四邊形練習(xí)題附詳細(xì)答案一、平行四邊形1.已知,在矩形ABCD中,AB=a,BC=b,動點M從點A出發(fā)沿邊AD向點D運動.(1)如圖1,當(dāng)b=2a,點M運動到邊AD的中點時,請證明∠BMC=90°;(2)如圖2,當(dāng)b>2a時,點M在運動的過程中,是否存在∠BMC=90°,若存在,請給與證明;若不存在,請說明理由;(3)如圖3,當(dāng)b<2a時,(2)中的結(jié)論是否仍然成立?請說明理由.【答案】(1)見解析;(2)存在,理由見解析;(3)不成立.理由如下見解析.【解析】試題分析:(1)由b=2a,點M是AD的中點,可得AB=AM=MD=DC=a,又由四邊形ABCD是矩形,即可求得∠AMB=∠DMC=45°,則可求得∠BMC=90°;(2)由∠BMC=90°,易證得△ABM∽△DMC,設(shè)AM=x,根據(jù)相似三角形的對應(yīng)邊成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可確定方程有兩個不相等的實數(shù)根,且兩根均大于零,符合題意;(3)由(2),當(dāng)b<2a,a>0,b>0,判定方程x2﹣bx+a2=0的根的情況,即可求得答案.試題解析:(1)∵b=2a,點M是AD的中點,∴AB=AM=MD=DC=a,又∵在矩形ABCD中,∠A=∠D=90°,∴∠AMB=∠DMC=45°,∴∠BMC=90°.(2)存在,理由:若∠BMC=90°,則∠AMB+∠DMC=90°,又∵∠AMB+∠ABM=90°,∴∠ABM=∠DMC,又∵∠A=∠D=90°,∴△ABM∽△DMC,∴,設(shè)AM=x,則,整理得:x2﹣bx+a2=0,∵b>2a,a>0,b>0,∴△=b2﹣4a2>0,∴方程有兩個不相等的實數(shù)根,且兩根均大于零,符合題意,∴當(dāng)b>2a時,存在∠BMC=90°,(3)不成立.理由:若∠BMC=90°,由(2)可知x2﹣bx+a2=0,∵b<2a,a>0,b>0,∴△=b2﹣4a2<0,∴方程沒有實數(shù)根,∴當(dāng)b<2a時,不存在∠BMC=90°,即(2)中的結(jié)論不成立.考點:1、相似三角形的判定與性質(zhì);2、根的判別式;3、矩形的性質(zhì)2.在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且∠EAF=∠CEF=45°.(1)將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG(如圖①),求證:△AEG≌△AEF;(2)若直線EF與AB,AD的延長線分別交于點M,N(如圖②),求證:EF2=ME2+NF2;(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.【答案】(1)證明見解析;(2)證明見解析;(3)EF2=2BE2+2DF2.【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知AF=AG,∠EAF=∠GAE=45°,故可證△AEG≌△AEF;(2)將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.由(1)知△AEG≌△AEF,則EG=EF.再由△BME、△DNF、△CEF均為等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后證明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代換即可證明EF2=ME2+NF2;(3)將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADF≌△ABG,則DF=BG,再證明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代換得到EF=BE+DF.試題解析:(1)∵△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE與△AFE中,,∴△AGE≌△AFE(SAS);(2)設(shè)正方形ABCD的邊長為a.將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.則△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均為等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如圖所示,延長EF交AB延長線于M點,交AD延長線于N點,將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△AGH,連結(jié)HM,HE.由(1)知△AEH≌△AEF,則由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考點:四邊形綜合題3.如圖,在正方形ABCD中,E是邊AB上的一動點,點F在邊BC的延長線上,且,連接DE,DF,EF.FH平分交BD于點H.(1)求證:;(2)求證::(3)過點H作于點M,用等式表示線段AB,HM與EF之間的數(shù)量關(guān)系,并證明.【答案】(1)詳見解析;(2)詳見解析;(3),證明詳見解析.【解析】【分析】(1)根據(jù)正方形性質(zhì),得到.(2)由,得.由,平分,得.因為平分,所以.由于,,所以.(3)過點作于點,由正方形性質(zhì),得.由平分,得.因為,所以.由,得.【詳解】(1)證明:∵四邊形是正方形,∴,.∴.∵?!?∴.∴.∴.(2)證明:∵,∴.∵,∴.∵,平分,∴.∵平分,∴.∵,,∴.∴.(3).證明:過點作于點,如圖,∵正方形中,,,∴.∵平分,∴.∵,∴.∴.∵,∴.【點睛】本題考查正方形的性質(zhì)、勾股定理、角平分線的性質(zhì)、三角函數(shù),題目難度較大,解題的關(guān)鍵是熟練掌握正方形的性質(zhì)、勾股定理、角平分線的性質(zhì)、三角函數(shù).4.閱讀下列材料:我們定義:若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,則這條對角線叫這個四邊形的和諧線,這個四邊形叫做和諧四邊形.如正方形就是和諧四邊形.結(jié)合閱讀材料,完成下列問題:(1)下列哪個四邊形一定是和諧四邊形.A.平行四邊形B.矩形C.菱形D.等腰梯形(2)命題:“和諧四邊形一定是軸對稱圖形”是命題(填“真”或“假”).(3)如圖,等腰Rt△ABD中,∠BAD=90°.若點C為平面上一點,AC為凸四邊形ABCD的和諧線,且AB=BC,請求出∠ABC的度數(shù).【答案】(1)C;(2)∠ABC的度數(shù)為60°或90°或150°.【解析】試題分析:(1)根據(jù)菱形的性質(zhì)和和諧四邊形定義,直接得出結(jié)論.(2)根據(jù)和諧四邊形定義,分AD=CD,AD=AC,AC=DC討論即可.(1)根據(jù)和諧四邊形定義,平行四邊形,矩形,等腰梯形的對角線不能把四邊形分成兩個等腰三角形,菱形的一條對角線能把四邊形分成兩個等腰三角形夠.故選C.(2)∵等腰Rt△ABD中,∠BAD=90°,∴AB=AD.∵AC為凸四邊形ABCD的和諧線,且AB=BC,∴分三種情況討論:若AD=CD,如圖1,則凸四邊形ABCD是正方形,∠ABC=90°;若AD=AC,如圖2,則AB=AC=BC,△ABC是等邊三角形,∠ABC=60°;若AC=DC,如圖3,則可求∠ABC=150°.考點:1.新定義;2.菱形的性質(zhì);3.正方形的判定和性質(zhì);4.等邊三角形的判定和性質(zhì);5.分類思想的應(yīng)用.5.(1)如圖1,將矩形折疊,使落在對角線上,折痕為,點落在點處,若,則的度數(shù)為______.(2)小明手中有一張矩形紙片,,.(畫一畫)如圖2,點在這張矩形紙片的邊上,將紙片折疊,使落在所在直線上,折痕設(shè)為(點,分別在邊,上),利用直尺和圓規(guī)畫出折痕(不寫作法,保留作圖痕跡,并用黑色水筆把線段描清楚);(算一算)如圖3,點在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點分別落在點,處,若,求的長.【答案】(1)21;(2)畫一畫;見解析;算一算:【解析】【分析】(1)利用平行線的性質(zhì)以及翻折不變性即可解決問題;(2)【畫一畫】,如圖2中,延長BA交CE的延長線由G,作∠BGC的角平分線交AD于M,交BC于N,直線MN即為所求;【算一算】首先求出GD=9-,由矩形的性質(zhì)得出AD∥BC,BC=AD=9,由平行線的性質(zhì)得出∠DGF=∠BFG,由翻折不變性可知,∠BFG=∠DFG,證出∠DFG=∠DGF,由等腰三角形的判定定理證出DF=DG=,再由勾股定理求出CF,可得BF,再利用翻折不變性,可知FB′=FB,由此即可解決問題.【詳解】(1)如圖1所示:∵四邊形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=42°,由翻折的性質(zhì)可知,∠DBE=∠EBC=∠DBC=21°,故答案為21.(2)【畫一畫】如圖所示:【算一算】如3所示:∵AG=,AD=9,∴GD=9-,∵四邊形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不變性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,由勾股定理得:CF=,∴BF=BC-CF=9,由翻折不變性可知,F(xiàn)B=FB′=,∴B′D=DF-FB′=.【點睛】四邊形綜合題,考查了矩形的性質(zhì)、翻折變換的性質(zhì)、勾股定理、等腰三角形的判定、平行線的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用翻折不變性解決問題.6.△ABC為等邊三角形,..(1)求證:四邊形是菱形.(2)若是的角平分線,連接,找出圖中所有的等腰三角形.【答案】(1)證明見解析;(2)圖中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【解析】【分析】(1)先求證BD∥AF,證明四邊形ABDF是平行四邊形,再利用有一組鄰邊相等的平行四邊形是菱形即可證明;(2)先利用BD平分∠ABC,得到BD垂直平分線段AC,進而證明△DAC是等腰三角形,根據(jù)BD⊥AC,AF⊥AC,找到角度之間的關(guān)系,證明△DAE是等腰三角形,進而得到BC=BD=BA=AF=DF,即可解題,見詳解.【詳解】(1)如圖1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等邊三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四邊形ABDF是平行四邊形,∵AB=AF,∴四邊形ABDF是菱形.(2)解:如圖2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分線段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,綜上所述,圖中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【點睛】本題考查菱形的判定,等邊三角形的性質(zhì),等腰三角形的判定等知識,屬于中考??碱}型,熟練掌握等腰三角形的性質(zhì)是解題的關(guān)鍵.7.點P是矩形ABCD對角線AC所在直線上的一個動點(點P不與點A,C重合),分別過點A,C向直線BP作垂線,垂足分別為點E,F(xiàn),點O為AC的中點.(1)如圖1,當(dāng)點P與點O重合時,請你判斷OE與OF的數(shù)量關(guān)系;(2)當(dāng)點P運動到如圖2所示位置時,請你在圖2中補全圖形并通過證明判斷(1)中的結(jié)論是否仍然成立;(3)若點P在射線OA上運動,恰好使得∠OEF=30°時,猜想此時線段CF,AE,OE之間有怎樣的數(shù)量關(guān)系,直接寫出結(jié)論不必證明.【答案】(1)OE=OF.理由見解析;(2)補全圖形如圖所示見解析,OE=OF仍然成立;(3)CF=OE+AE或CF=OE﹣AE.【解析】【分析】(1)根據(jù)矩形的性質(zhì)以及垂線,即可判定,得出OE=OF;(2)先延長EO交CF于點G,通過判定,得出OG=OE,再根據(jù)中,,即可得到OE=OF;(3)根據(jù)點P在射線OA上運動,需要分兩種情況進行討論:當(dāng)點P在線段OA上時,當(dāng)點P在線段OA延長線上時,分別根據(jù)全等三角形的性質(zhì)以及線段的和差關(guān)系進行推導(dǎo)計算即可.【詳解】(1)OE=OF.理由如下:如圖1.∵四邊形ABCD是矩形,∴OA=OC.∵,,∴.∵在和中,,∴,∴OE=OF;(2)補全圖形如圖2,OE=OF仍然成立.證明如下:延長EO交CF于點G.∵,,∴AE//CF,∴.又∵點O為AC的中點,∴AO=CO.在和中,,∴,∴OG=OE,∴中,,∴OE=OF;(3)CF=OE+AE或CF=OE-AE.證明如下:①如圖2,當(dāng)點P在線段OA上時.∵,,∴,由(2)可得:OF=OG,∴是等邊三角形,∴FG=OF=OE,由(2)可得:,∴CG=AE.又∵CF=GF+CG,∴CF=OE+AE;②如圖3,當(dāng)點P在線段OA延長線上時.∵,,∴,同理可得:是等邊三角形,∴FG=OF=OE,同理可得:,∴CG=AE.又∵CF=GF-CG,∴CF=OE-AE.【點睛】本題屬于四邊形綜合題,主要考查了矩形的性質(zhì)、全等三角形的性質(zhì)和判定以及等邊三角形的性質(zhì)和判定,解決問題的關(guān)鍵是構(gòu)建全等三角形和證明三角形全等,利用矩形的對角線互相平分得全等的邊相等的條件,根據(jù)線段的和差關(guān)系使問題得以解決.8.在中,,BD為AC邊上的中線,過點C作于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,,求四邊形BDFG的周長.【答案】(1)證明見解析(2)證明見解析(3)8【解析】【分析】利用平行線的性質(zhì)得到,再利用直角三角形斜邊上的中線等于斜邊的一半即可得證,利用平行四邊形的判定定理判定四邊形BDFG為平行四邊形,再利用得結(jié)論即可得證,設(shè),則,利用菱形的性質(zhì)和勾股定理得到CF、AF和AC之間的關(guān)系,解出x即可.【詳解】證明:,,,又為AC的中點,,又,,證明:,,四邊形BDFG為平行四邊形,又,四邊形BDFG為菱形,解:設(shè),則,,在中,,解得:,舍去,,菱形BDFG的周長為8.【點睛】本題考查了菱形的判定與性質(zhì)直角三角形斜邊上的中線,勾股定理等知識,正確掌握這些定義性質(zhì)及判定并結(jié)合圖形作答是解決本題的關(guān)鍵.9.猜想與證明:如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.拓展與延伸:(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為.(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.【答案】猜想:DM=ME,證明見解析;(2)成立,證明見解析.【解析】試題分析:延長EM交AD于點H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(1)、延長EM交AD于點H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(2)、連接AE,根據(jù)正方形的性質(zhì)得出∠FCE=45°,∠FCA=45°,根據(jù)RT△ADF中AM=MF得出DM=AM=MF,根據(jù)RT△AEF中AM=MF得出AM=MF=ME,從而說明DM=ME.試題解析:如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如圖2,連接AE,∵四邊形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一條直線上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考點:(1)、三角形全等的性質(zhì);(2)、矩形的性質(zhì).10.如圖,在正方形ABCD中,點G在對角線BD上(不與點B,D重合),GE⊥DC于點E,GF⊥BC于點F,連結(jié)AG.(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;(2)若正方形ABCD的邊長為1,∠AGF=105°,求線段BG的長.【答案】(1)AG2=GE2+GF2(2)【解析】試題分析:(1)結(jié)論:AG2=GE2+GF2.只要證明GA=GC,四邊形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可證明;(2)作BN⊥AG于N,在BN上截取一點M,使得AM=BM.設(shè)AN=x.易證AM=BM=2x,MN=x,在Rt△ABN中,根據(jù)AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根據(jù)BG=BN÷cos30°即可解決問題.試題解析:(1)結(jié)論:AG2=GE2+GF2.理由:連接CG.∵四邊形ABCD是正方形,∴A、C關(guān)于對角線BD對稱,∵點G在BD上,∴GA=GC,∵GE⊥DC于點E,GF⊥BC于點F,∴∠GEC=∠ECF=∠CFG=90°,∴四邊形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一點M,使得AM=BM.設(shè)AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考點:1、正方形的性質(zhì),2、矩形的判定和性質(zhì),3、勾股定理,4、直角三角形30度的性質(zhì)11.(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請直接寫出BD'平方的值.【答案】(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】【分析】(1)依據(jù)點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為:AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,如圖所示:過B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運用,解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形,依據(jù)勾股定理進行計算求解.解題時注意:有三個角是直角的四邊形是矩形.12.如圖,AB為⊙O的直徑,點E在⊙O上,過點E的切線與AB的延長線交于點D,連接BE,過點O作BE的平行線,交⊙O于點F,交切線于點C,連接AC(1)求證:AC是⊙O的切線;(2)連接EF,當(dāng)∠D=°時,四邊形FOBE是菱形.【答案】(1)見解析;(2)30.【解析】【分析】(1)由等角的轉(zhuǎn)換證明出,根據(jù)圓的位置關(guān)系證得AC是⊙O的切線.(2)根據(jù)四邊形FOBE是菱形,得到OF=OB=BF=EF,得證為等邊三角形,而得出,根據(jù)三角形內(nèi)角和即可求出答案.【詳解】(1)證明:∵CD與⊙O相切于點E,∴,∴,又∵,∴,∠OBE=∠COA∵OE=OB,∴,∴,又∵OC=OC,OA=OE,∴,∴,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)解:∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴為等邊三角形,∴,而,∴.故答案為30.【點睛】本題主要考查與圓有關(guān)的位置關(guān)系和圓中的計算問題,熟練掌握圓的性質(zhì)是本題的解題關(guān)鍵.13.如圖1,若分別以△ABC的AC、BC兩邊為邊向外側(cè)作的四邊形ACDE和BCFG為正方形,則稱這兩個正方形為外展雙葉正方形.(1)發(fā)現(xiàn):如圖2,當(dāng)∠C=90°時,求證:△ABC與△DCF的面積相等.(2)引申:如果∠C90°時,(1)中結(jié)論還成立嗎?若成立,請結(jié)合圖1給出證明;若不成立,請說明理由;(3)運用:如圖3,分別以△ABC的三邊為邊向外側(cè)作的四邊形ACDE、BCFG和ABMN為正方形,則稱這三個正方形為外展三葉正方形.已知△ABC中,AC=3,BC=4.當(dāng)∠C=_____°時,圖中陰影部分的面積和有最大值是________.【答案】(1)證明見解析;(2)成立,證明見解析;(3)18.【解析】試題分析:(1)因為AC=DC,∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,從而△ABC與△DFC的面積相等;(2)延長BC到點P,過點A作AP⊥BP于點P;過點D作DQ⊥FC于點Q.得到四邊形ACDE,BCFG均為正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC.于是AP=DQ.又因為S△ABC=BC?AP,S△DFC=FC?DQ,所以S△ABC=S△DFC;(3)根據(jù)(2)得圖中陰影部分的面積和是△ABC的面積三倍,若圖中陰影部分的面積和有最大值,則三角形ABC的面積最大,當(dāng)△ABC是直角三角形,即∠C是90度時,陰影部分的面積和最大.所以S陰影部分面積和=3S△ABC=3××3×4=18.(1)證明:在△ABC與△DFC中,∵,∴△ABC≌△DFC.∴△ABC與△DFC的面積相等;(2)解:成立.理由如下:如圖,延長BC到點P,過點A作AP⊥BP于點P;過點D作DQ⊥FC于點Q.∴∠APC=∠DQC=90°.∵四邊形ACDE,BCFG均為正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ.∴,△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=BC?AP,S△DFC=FC?DQ,∴S△ABC=S△DFC;(3)解:根據(jù)(2)得圖中陰影部分的面積和是△ABC的面積三倍,若圖中陰影部分的面積和有最大值,則三角形ABC的面積最大,∴當(dāng)△ABC是直角三角形,即∠C是90度時,陰影部分的面積和最大.∴S陰影部分面積和=3S△ABC=3××3×4=18.考點:四邊形綜合題14.如圖,P是邊長為1的正方形ABCD對角線BD上一動點(P與B、D不重合),∠APE=90°,且點E在BC邊上,AE交BD于點F.(1)求證:①△PAB≌△PCB;②PE=PC;(2)在點P的運動過程中,的值是否改變?若不變,求出它的值;若改變,請說明理由;(3)設(shè)DP=x,當(dāng)x為何值時,AE∥PC,并判斷此時四邊形PAFC的形狀.【答案】(1)見解析;(2);(3)x=﹣1;四邊形PAFC是菱形.【解析】試題分析:(1)根據(jù)四邊形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根據(jù)PB=PB,即可證出△PAB≌△PCB,②根據(jù)∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,從而證出PE=PC;(2)根據(jù)PA=PC,PE=PC,得出PA=PE,再根據(jù)∠APE=90°,得出∠PAE=∠PEA=45°,即可求出;(3)先求出∠CPE=∠PEA=45°,從而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,從而證出BP=BC=1,x=﹣1,再根據(jù)AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB得出∠BPA=∠BPC=67.5°,PA=PC,從而證出AF=AP=PC,得出答案.試題解析:(1)①∵四邊形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.∵PB=PB,∴△PAB≌△PCB(SAS).②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.(2)在點P的運動過程中,的值不改變.由△PAB≌△PCB可知,PA=PC.∵PE=PC,∴PA=PE,又∵∠APE=90°,∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)=67.5°.在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,∴∠AFP=∠BPA,∴AF=AP=PC,∴四邊形PAFC是菱形.考點:四邊形綜合題.15.如圖1,在菱形ABCD中,ABC=60°,若點E在AB的延長線上,EF∥AD,EF=BE,點P是DE的中點,連接FP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論