新鄉(xiāng)職業(yè)技術學院《針織服裝設計》2025-2026學年第一學期期末試卷_第1頁
新鄉(xiāng)職業(yè)技術學院《針織服裝設計》2025-2026學年第一學期期末試卷_第2頁
新鄉(xiāng)職業(yè)技術學院《針織服裝設計》2025-2026學年第一學期期末試卷_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記。…………密………………封………………線…………第1頁,共2頁新鄉(xiāng)職業(yè)技術學院《針織服裝設計》2025-2026學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像修復任務中,假設要修復一張有部分缺失的圖像。以下關于圖像修復方法的描述,正確的是:()A.基于擴散的圖像修復方法能夠自然地填充缺失區(qū)域,但修復速度慢B.基于樣本的圖像修復方法可以快速生成修復結果,但容易出現(xiàn)重復紋理C.深度學習中的生成對抗網絡(GAN)在圖像修復中無法保證修復內容與周圍區(qū)域的一致性D.所有的圖像修復方法都能夠完美地恢復出圖像缺失部分的真實內容2、在計算機視覺的圖像配準任務中,需要將不同視角或時間拍攝的圖像進行對齊。假設要將兩張具有一定旋轉和平移差異的圖像進行配準,以下關于圖像配準方法的描述,正確的是:()A.基于特征點匹配的圖像配準方法對圖像的變形和光照變化不敏感B.直接使用像素值的相似性度量就能實現(xiàn)準確的圖像配準C.圖像配準不需要考慮圖像的分辨率和比例尺差異D.深度學習在圖像配準中的應用還不成熟,不如傳統(tǒng)方法有效3、計算機視覺在工業(yè)檢測中的應用可以提高產品質量和生產效率。假設一個工廠需要檢測生產線上的零件是否存在缺陷。以下關于工業(yè)檢測中的計算機視覺的描述,哪一項是不準確的?()A.能夠快速準確地檢測出零件的表面缺陷、尺寸偏差等問題B.可以通過機器視覺系統(tǒng)對零件進行自動分類和篩選C.工業(yè)檢測中的計算機視覺系統(tǒng)需要高度的穩(wěn)定性和可靠性,對環(huán)境變化不敏感D.計算機視覺在工業(yè)檢測中的應用已經非常成熟,不需要人工干預和校驗4、在計算機視覺的圖像檢索任務中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關圖像。假設要從一個大型的圖像庫中檢索包含特定物體的圖像,以下關于圖像檢索方法的描述,哪一項是不正確的?()A.可以基于圖像的內容特征,如顏色、形狀和紋理等,進行相似性度量和檢索B.深度學習模型能夠提取更具語義和判別力的特征,提高圖像檢索的準確性C.圖像檢索的結果只取決于圖像的特征表示,與檢索算法的效率無關D.可以結合用戶的反饋和交互,不斷優(yōu)化圖像檢索的結果5、在計算機視覺的視頻目標跟蹤中,假設目標在視頻中被短暫遮擋。以下關于處理遮擋情況的方法,哪一項是不太有效的?()A.利用目標在遮擋前的運動軌跡預測其位置B.完全放棄對被遮擋目標的跟蹤,等待其重新出現(xiàn)C.結合目標的外觀特征和運動信息進行跟蹤D.借助周圍背景和其他相關物體的信息輔助跟蹤6、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和識別。以下關于動作識別的描述,不準確的是()A.動作識別需要分析視頻中的時空特征來理解動作的模式和類別B.雙流卷積網絡在動作識別任務中被廣泛應用,分別處理空間和時間信息C.動作識別在體育分析、視頻監(jiān)控和智能安防等領域具有重要的應用價值D.動作識別技術已經非常成熟,能夠準確識別各種復雜和細微的動作7、計算機視覺中的車牌識別是智能交通系統(tǒng)中的重要組成部分。假設要在一個高速公路收費站實現(xiàn)準確的車牌識別,以下關于車牌識別方法的描述,正確的是:()A.基于邊緣檢測和字符分割的方法對車牌的變形和污漬具有很強的適應性B.深度學習中的卷積神經網絡能夠直接從車牌圖像中識別出字符,但對車牌的傾斜和光照不均敏感C.車牌識別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運行D.車牌識別的準確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關8、在計算機視覺的場景理解任務中,假設要理解一個室內場景的布局和物體關系。以下關于利用深度學習模型的方法,哪一項是不太恰當?shù)模浚ǎ〢.使用卷積神經網絡(CNN)提取圖像特征B.運用循環(huán)神經網絡(RNN)處理場景的序列信息C.直接使用未經訓練的神經網絡,期望其自動學習場景理解D.結合CNN和RNN,構建端到端的場景理解模型9、在計算機視覺的應用于農業(yè)領域,例如作物監(jiān)測和病蟲害檢測,需要對大量的田間圖像進行分析。假設我們要檢測農作物葉片上的病蟲害癥狀,以下哪種技術能夠實現(xiàn)快速、準確的檢測,并且適應不同的生長階段和環(huán)境條件?()A.基于傳統(tǒng)圖像分割和特征提取的方法B.基于深度學習的目標檢測和分類算法,針對病蟲害特征訓練C.基于光譜分析和顏色特征的方法D.基于機器視覺和模式識別的方法10、在計算機視覺的三維重建任務中,例如從多視角圖像恢復物體的三維形狀,需要解決相機位姿估計、特征匹配等問題。以下哪種方法在相機位姿估計方面可能具有更高的精度?()A.基于直接線性變換的方法B.基于BundleAdjustment的方法C.基于特征點的方法D.基于深度學習的方法11、在計算機視覺的全景圖像拼接任務中,假設要將多張拍攝的局部圖像拼接成一幅完整的全景圖。以下關于圖像匹配和融合的步驟,哪一項是容易出錯的?()A.準確找到相鄰圖像之間的特征點進行匹配B.對匹配后的圖像進行幾何校正和投影變換C.直接將圖像拼接在一起,不進行任何過渡處理D.采用合適的融合算法,消除拼接處的明顯痕跡12、計算機視覺在文物保護和數(shù)字化中的應用可以幫助記錄和分析文物信息。假設要對一件古老的雕塑進行三維數(shù)字化和表面紋理分析,以下關于文物保護計算機視覺應用的描述,正確的是:()A.傳統(tǒng)的攝影測量方法在文物數(shù)字化中比基于深度學習的方法更精確B.文物的復雜形狀和表面材質對數(shù)字化和分析過程沒有挑戰(zhàn)C.結合多種成像技術和計算機視覺算法能夠更全面地獲取文物的信息D.文物保護中的計算機視覺應用不需要考慮對文物的非接觸性和無損性要求13、在計算機視覺的圖像壓縮任務中,假設要在保證圖像質量的前提下盡可能減小文件大小。以下關于壓縮算法的選擇,哪一項是不正確的?()A.選擇基于變換的壓縮算法,如離散余弦變換(DCT)B.采用無損壓縮算法,確保圖像信息完全不丟失C.只考慮壓縮比,不關心圖像的視覺質量D.根據(jù)圖像的特點和應用需求選擇合適的壓縮算法14、視頻分析是計算機視覺的一個重要領域。假設我們要分析一段監(jiān)控視頻,以檢測異常行為,如打架、盜竊等。對于這種實時性要求較高的視頻分析任務,以下哪種方法更適合用于快速處理和檢測?()A.對每一幀圖像單獨進行分析B.基于光流的方法跟蹤對象運動C.利用深度學習模型直接對視頻進行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除15、計算機視覺在安防領域的應用可以加強監(jiān)控和預警能力。假設要通過攝像頭實時監(jiān)測公共場所的異常行為,以下關于安防計算機視覺應用的描述,正確的是:()A.簡單的運動檢測算法就能準確識別各種異常行為B.不考慮人群密度和環(huán)境背景對異常行為檢測的影響C.結合深度學習和行為分析模型可以提高異常行為檢測的準確性和及時性D.安防領域的計算機視覺系統(tǒng)不需要考慮隱私保護和數(shù)據(jù)安全問題二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述計算機視覺中圖像分類的任務和方法。2、(本題5分)計算機視覺中如何進行婦女服務中的需求分析?3、(本題5分)計算機視覺中如何進行版權服務中的作品鑒定?4、(本題5分)解釋計算機視覺中的模型剪枝技術。三、應用題(本大題共5個小題,共25分)1、(本題5分)利用圖像增強技術,提升水下拍攝圖像的清晰度和對比度。2、(本題5分)利用目標檢測算法,在氣象圖像中檢測暴雨區(qū)域。3、(本題5分)設計一個基于計算機視覺的指紋識別系統(tǒng)。4、(本題5分)對演唱會的視頻進行觀眾情緒分析和熱度評估。5、(本題5分)使用目標檢測技術,從環(huán)保監(jiān)測圖像中檢測出污染源。四、分析題(本大題共4個小題,共40分)1、(本題10分)研究某化妝品品牌的線下體驗店設計,分析其視覺效果、產品展示和服務體驗,討論如何吸引顧客的光顧和提高品牌的忠誠度。2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論