武漢市英格中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第1頁(yè)
武漢市英格中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第2頁(yè)
武漢市英格中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第3頁(yè)
武漢市英格中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第4頁(yè)
武漢市英格中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

武漢市英格中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案一、壓軸題1.在我們認(rèn)識(shí)的多邊形中,有很多軸對(duì)稱圖形.有些多邊形,邊數(shù)不同對(duì)稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對(duì)稱軸.回答下列問(wèn)題:(1)非等邊的等腰三角形有________條對(duì)稱軸,非正方形的長(zhǎng)方形有________條對(duì)稱軸,等邊三角形有___________條對(duì)稱軸;(2)觀察下列一組凸多邊形(實(shí)線畫(huà)出),它們的共同點(diǎn)是只有1條對(duì)稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請(qǐng)你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個(gè)只有1條對(duì)稱軸的凸五邊形,并用實(shí)線畫(huà)出所得的凸五邊形;(3)小明希望構(gòu)造出一個(gè)恰好有2條對(duì)稱軸的凸六邊形,于是他選擇修改長(zhǎng)方形,圖2中是他沒(méi)有完成的圖形,請(qǐng)用實(shí)線幫他補(bǔ)完整個(gè)圖形;(4)請(qǐng)你畫(huà)一個(gè)恰好有3條對(duì)稱軸的凸六邊形,并用虛線標(biāo)出對(duì)稱軸.2.(閱讀材科)小明同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的項(xiàng)角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái)則形成一組全等的三角形,小明把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小明發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則△ABD≌△ACE.(材料理解)(1)在圖1中證明小明的發(fā)現(xiàn).(深入探究)(2)如圖2,△ABC和△AED是等邊三角形,連接BD,EC交于點(diǎn)O,連接AO,下列結(jié)論:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正確的有.(將所有正確的序號(hào)填在橫線上).(延伸應(yīng)用)(3)如圖3,AB=BC,∠ABC=∠BDC=60°,試探究∠A與∠C的數(shù)量關(guān)系.3.閱讀下面材料,完成(1)-(3)題.?dāng)?shù)學(xué)課上,老師出示了這樣一道題:如圖1,已知等腰△ABC中,AB=AC,AD為BC邊上的中線,以AB為邊向AB左側(cè)作等邊△ABE,直線CE與直線AD交于點(diǎn)F.請(qǐng)?zhí)骄烤€段EF、AF、DF之間的數(shù)量關(guān)系,并證明.同學(xué)們經(jīng)過(guò)思考后,交流了自已的想法:小明:“通過(guò)觀察和度量,發(fā)現(xiàn)∠DFC的度數(shù)可以求出來(lái).”小強(qiáng):“通過(guò)觀察和度量,發(fā)現(xiàn)線段DF和CF之間存在某種數(shù)量關(guān)系.”小偉:“通過(guò)做輔助線構(gòu)造全等三角形,就可以將問(wèn)題解決.”......老師:“若以AB為邊向AB右側(cè)作等邊△ABE,其它條件均不改變,請(qǐng)?jiān)趫D2中補(bǔ)全圖形,探究線段EF、AF、DF三者的數(shù)量關(guān)系,并證明你的結(jié)論.”(1)求∠DFC的度數(shù);(2)在圖1中探究線段EF、AF、DF之間的數(shù)量關(guān)系,并證明;(3)在圖2中補(bǔ)全圖形,探究線段EF、AF、DF之間的數(shù)量關(guān)系,并證明.4.探究:如圖①,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,若∠B=30°,則∠ACD的度數(shù)是度;拓展:如圖②,∠MCN=90°,射線CP在∠MCN的內(nèi)部,點(diǎn)A、B分別在CM、CN上,分別過(guò)點(diǎn)A、B作AD⊥CP、BE⊥CP,垂足分別為D、E,若∠CBE=70°,求∠CAD的度數(shù);應(yīng)用:如圖③,點(diǎn)A、B分別在∠MCN的邊CM、CN上,射線CP在∠MCN的內(nèi)部,點(diǎn)D、E在射線CP上,連接AD、BE,若∠ADP=∠BEP=60°,則∠CAD+∠CBE+∠ACB=度.5.如圖所示,在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo),過(guò)點(diǎn)作軸,垂足為點(diǎn),過(guò)點(diǎn)作直線軸,點(diǎn)從點(diǎn)出發(fā)在軸上沿著軸的正方向運(yùn)動(dòng).(1)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)處,過(guò)點(diǎn)作的垂線交直線于點(diǎn),證明,并求此時(shí)點(diǎn)的坐標(biāo);(2)點(diǎn)是直線上的動(dòng)點(diǎn),問(wèn)是否存在點(diǎn),使得以為頂點(diǎn)的三角形和全等,若存在求點(diǎn)的坐標(biāo)以及此時(shí)對(duì)應(yīng)的點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.6.如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,BP=cm,CQ=cm.(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?(4)若點(diǎn)Q以(3)中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次相遇?7.已知ABC,P是平面內(nèi)任意一點(diǎn)(A、B、C、P中任意三點(diǎn)都不在同一直線上).連接PB、PC,設(shè)∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y(tǒng)°.(1)如圖,當(dāng)點(diǎn)P在ABC內(nèi)時(shí),①若y=70,s=10,t=20,則x=;②探究s、t、x、y之間的數(shù)量關(guān)系,并證明你得到的結(jié)論.(2)當(dāng)點(diǎn)P在ABC外時(shí),直接寫(xiě)出s、t、x、y之間所有可能的數(shù)量關(guān)系,并畫(huà)出相應(yīng)的圖形.8.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=60°,則∠1+∠2=;(2)若點(diǎn)P在線段AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為;(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長(zhǎng)線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由;(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由.9.在中,,,是的角平分線,于點(diǎn).(1)如圖1,連接,求證:是等邊三角形;(2)如圖2,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn)重合),以為一邊,在下方作,交延長(zhǎng)線于點(diǎn).求證:;(3)如圖3,點(diǎn)是線段上的點(diǎn),以為一邊,在的下方作,交延長(zhǎng)線于點(diǎn).直接寫(xiě)出,與數(shù)量之間的關(guān)系.10.探索發(fā)現(xiàn):……根據(jù)你發(fā)現(xiàn)的規(guī)律,回答下列問(wèn)題:(1)=,=;(2)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:(3)利用規(guī)律解方程:11.對(duì)定義一種新運(yùn)算,規(guī)定:(其中均為非零常數(shù)).例如:.(1)已知.①求的值;②若關(guān)于的不等式組恰好有3個(gè)整數(shù)解,求的取值范圍;(2)當(dāng)時(shí),對(duì)任意有理數(shù)都成立,請(qǐng)直接寫(xiě)出滿足的關(guān)系式.學(xué)習(xí)參考:①,即單項(xiàng)式乘以多項(xiàng)式就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的結(jié)果相加;②,即多項(xiàng)式乘以多項(xiàng)式就是用一個(gè)多項(xiàng)式的每一項(xiàng)去乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的結(jié)果相加.12.如圖,在中,,,點(diǎn)D在邊BC上運(yùn)動(dòng)(點(diǎn)D不與點(diǎn)重合),連接AD,作,DE交邊AC于點(diǎn)E.(1)當(dāng)時(shí),,(2)當(dāng)DC等于多少時(shí),,請(qǐng)說(shuō)明理由;(3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,的形狀可以是等腰三角形嗎?若可以,請(qǐng)求出的度數(shù);若不可以,請(qǐng)說(shuō)明理由.13.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點(diǎn)D.求∠BDC的大小(用含α的代數(shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE的平分線交于點(diǎn)F,求∠BFC的大小(用含α的代數(shù)式表示);(3)在(2)的條件下,將△FBC以直線BC為對(duì)稱軸翻折得到△GBC,∠GBC的平分線與∠GCB的平分線交于點(diǎn)M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).14.如圖,在中,為的中點(diǎn),,.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間是.(1)在運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)位于線段的垂直平分線上時(shí),求出的值;(2)在運(yùn)動(dòng)過(guò)程中,當(dāng)時(shí),求出的值;(3)是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.15.閱讀材料并完成習(xí)題:在數(shù)學(xué)中,我們會(huì)用“截長(zhǎng)補(bǔ)短”的方法來(lái)構(gòu)造全等三角形解決問(wèn)題.請(qǐng)看這個(gè)例題:如圖1,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四邊形ABCD的面積.解:延長(zhǎng)線段CB到E,使得BE=CD,連接AE,我們可以證明△BAE≌△DAC,根據(jù)全等三角形的性質(zhì)得AE=AC=2,∠EAB=∠CAD,則∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四邊形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,這樣,四邊形ABCD的面積就轉(zhuǎn)化為等腰直角三角形EAC面積.(1)根據(jù)上面的思路,我們可以求得四邊形ABCD的面積為cm2.(2)請(qǐng)你用上面學(xué)到的方法完成下面的習(xí)題.如圖2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五邊形FGHMN的面積.16.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.17.如圖1,直角三角形DEF與直角三角形ABC的斜邊在同一直線上,∠EDF=30°,∠ABC=40°,CD平分∠ACB,將△DEF繞點(diǎn)D按逆時(shí)針?lè)较蛐D(zhuǎn),記∠ADF為α(0°<α<180°),在旋轉(zhuǎn)過(guò)程中;(1)如圖2,當(dāng)∠α=時(shí),,當(dāng)∠α=時(shí),DE⊥BC;(2)如圖3,當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),邊DF、DE分別交BC、AC的延長(zhǎng)線于點(diǎn)M、N,①此時(shí)∠α的度數(shù)范圍是;②∠1與∠2度數(shù)的和是否變化?若不變求出∠1與∠2度數(shù)和;若變化,請(qǐng)說(shuō)明理由;③若使得∠2≥2∠1,求∠α的度數(shù)范圍.18.(1)在等邊三角形ABC中,①如圖①,D,E分別是邊AC,AB上的點(diǎn)且AE=CD,BD與EC交于點(diǎn)F,則∠BFE的度數(shù)是度;②如圖②,D,E分別是邊AC,BA延長(zhǎng)線上的點(diǎn)且AE=CD,BD與EC的延長(zhǎng)線交于點(diǎn)F,此時(shí)∠BFE的度數(shù)是度;(2)如圖③,在△ABC中,AC=BC,∠ACB是銳角,點(diǎn)O是AC邊的垂直平分線與BC的交點(diǎn),點(diǎn)D,E分別在AC,OA的延長(zhǎng)線上,AE=CD,BD與EC的延長(zhǎng)線交于點(diǎn)F,若∠ACB=α,求∠BFE的大?。ㄓ煤恋拇鷶?shù)式表示).19.(1)探索發(fā)現(xiàn):如圖1,已知Rt△ABC中,∠ACB=90°,AC=BC,直線l過(guò)點(diǎn)C,過(guò)點(diǎn)A作AD⊥l,過(guò)點(diǎn)B作BE⊥l,垂足分別為D、E.求證:AD=CE,CD=BE.(2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個(gè)銳角的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,另兩個(gè)頂點(diǎn)均落在第一象限內(nèi),已知點(diǎn)M的坐標(biāo)為(1,3),求點(diǎn)N的坐標(biāo).(3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線y=﹣3x+3與y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,將直線PQ繞P點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)45°后,所得的直線交x軸于點(diǎn)R.求點(diǎn)R的坐標(biāo).20.問(wèn)題背景:(1)如圖1,已知△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.求證:DE=BD+CE.拓展延伸:(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC.請(qǐng)寫(xiě)出DE、BD、CE三條線段的數(shù)量關(guān)系.(不需要證明)實(shí)際應(yīng)用:(3)如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(-2,0),點(diǎn)A的坐標(biāo)為(-6,3),請(qǐng)直接寫(xiě)出B點(diǎn)的坐標(biāo).【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、壓軸題1.(1)1,2,3;(2)答案見(jiàn)解析;(3)答案見(jiàn)解析;(4)答案見(jiàn)解析.【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)、矩形的性質(zhì)以及等邊三角形的性質(zhì)進(jìn)行判斷即可;(2)中圖1-2和圖1-3都可以看作由圖1-1修改得到的,在圖1-4和圖1-5中,分別仿照類似的修改方式進(jìn)行畫(huà)圖即可;(3)長(zhǎng)方形具有兩條對(duì)稱軸,在長(zhǎng)方形的右側(cè)補(bǔ)出與左側(cè)一樣的圖形,即可構(gòu)造出一個(gè)恰好有2條對(duì)稱軸的凸六邊形;(4)在等邊三角形的基礎(chǔ)上加以修改,即可得到恰好有3條對(duì)稱軸的凸六邊形.【詳解】解:(1)非等邊的等腰三角形有1條對(duì)稱軸,非正方形的長(zhǎng)方形有2條對(duì)稱軸,等邊三角形有3條對(duì)稱軸,故答案為1,2,3;(2)恰好有1條對(duì)稱軸的凸五邊形如圖中所示.(3)恰好有2條對(duì)稱軸的凸六邊形如圖所示.(4)恰好有3條對(duì)稱軸的凸六邊形如圖所示.2.(1)證明見(jiàn)解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性質(zhì)得出∠BAD=∠CAE,即可得出結(jié)論;(2)同(1)的方法判斷出△ABD≌△ACE,得出BD=CE,再利用對(duì)頂角和三角形的內(nèi)角和定理判斷出∠BOC=60°,再判斷出△BCF≌△ACO,得出∠AOC=120°,進(jìn)而得出∠AOE=60°,再判斷出BF<CF,進(jìn)而判斷出∠OBC>30°,即可得出結(jié)論;(3)先判斷出△BDP是等邊三角形,得出BD=BP,∠DBP=60°,進(jìn)而判斷出△ABD≌△CBP(SAS),即可得出結(jié)論.【詳解】(1)證明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)如圖2,∵△ABC和△ADE是等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,①正確,∠ADB=∠AEC,記AD與CE的交點(diǎn)為G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正確,在OB上取一點(diǎn)F,使OF=OC,∴△OCF是等邊三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正確,連接AF,要使OC=OE,則有OC=CE,∵BD=CE,∴CF=OF=BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而沒(méi)辦法判斷∠OBC大于30度,所以,④不一定正確,即:正確的有①②③,故答案為①②③;(3)如圖3,延長(zhǎng)DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等邊三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【點(diǎn)睛】此題考查三角形綜合題,等腰三角形的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),構(gòu)造等邊三角形是解題的關(guān)鍵.3.(1)60°;(2)EF=AF+FC,證明見(jiàn)解析;(3)AF=EF+2DF,證明見(jiàn)解析.【解析】【分析】(1)可設(shè)∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根據(jù)三角形內(nèi)角和可得2α+60+2β=180°,從而有α+β=60°,即可得出∠DFC的度數(shù);(2)在EC上截取EG=CF,連接AG,證明△AEG≌△ACF,然后再證明△AFG為等邊三角形,從而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,連接BG,BF,證明方法類似(2),先證明△ABG≌△EBF,再證明△BFG為等邊三角形,最后可得出結(jié)論.【詳解】解:(1)∵AB=AC,AD為BC邊上的中線,∴可設(shè)∠BAD=∠CAD=α,又△ABE為等邊三角形,∴AE=AB=AC,∠EAB=60°,∴可設(shè)∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,證明如下:∵AB=AC,AD為BC邊上的中線,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,則∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,連接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG為等邊三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)補(bǔ)全圖形如圖所示,結(jié)論:AF=EF+2DF.證明如下:同(1)可設(shè)∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE為等邊三角形,∴∠ABE=∠AFC=60°,∴由8字圖可得:∠BAD=∠BEF,在AF上截取AG=EF,連接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG為等邊三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解決問(wèn)題的關(guān)鍵是常用輔助線構(gòu)造全等三角形,屬于中考常考題型.4.探究:30;(2)拓展:20°;(3)應(yīng)用:120【解析】【分析】(1)利用直角三角形的性質(zhì)依次求出∠A,∠ACD即可;(2)利用直角三角形的性質(zhì)直接計(jì)算得出即可;(3)利用三角形的外角的性質(zhì)得出結(jié)論,直接轉(zhuǎn)化即可得出結(jié)論.【詳解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案為:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案為120.【點(diǎn)睛】此題是三角形的綜合題,主要考查了直角三角形的性質(zhì),三角形的外角的性質(zhì),垂直的定義,解本題的關(guān)鍵是充分利用直角三角形的性質(zhì):兩銳角互余,是一道比較簡(jiǎn)單的綜合題.5.(1)證明見(jiàn)解析;;(2)存在,,或,或,或,或,或,.【解析】【分析】(1)通過(guò)全等三角形的判定定理ASA證得△ABP≌△PCD,由全等三角形的對(duì)應(yīng)邊相等證得AP=DP,DC=PB=3,易得點(diǎn)D的坐標(biāo);(2)設(shè)P(a,0),Q(2,b).需要分類討論:①AB=PC,BP=CQ;②AB=CQ,BP=PC.結(jié)合兩點(diǎn)間的距離公式列出方程組,通過(guò)解方程組求得a、b的值,得解.【詳解】(1)軸在和中,(2)設(shè),①,,解得或,或,或,或,②,,,解得,或,綜上:,或,或,或,或,或,【點(diǎn)睛】考查了三角形綜合題.涉及到了全等三角形的判定與性質(zhì),兩點(diǎn)間的距離公式,一元一次絕對(duì)值方程組的解法等知識(shí)點(diǎn).解答(2)題時(shí),由于沒(méi)有指明全等三角形的對(duì)應(yīng)邊(角),所以需要分類討論,以防漏解.6.(1)BP=3cm,CQ=3cm;(2)全等,理由詳見(jiàn)解析;(3);(4)經(jīng)過(guò)s點(diǎn)P與點(diǎn)Q第一次相遇.【解析】【分析】(1)速度和時(shí)間相乘可得BP、CQ的長(zhǎng);(2)利用SAS可證三角形全等;(3)三角形全等,則可得出BP=PC,CQ=BD,從而求出t的值;(4)第一次相遇,即點(diǎn)Q第一次追上點(diǎn)P,即點(diǎn)Q的運(yùn)動(dòng)的路程比點(diǎn)P運(yùn)動(dòng)的路程多10+10=20cm的長(zhǎng)度.【詳解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,點(diǎn)D為AB的中點(diǎn),∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS)(3)∵點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,∴BP與CQ不是對(duì)應(yīng)邊,即BP≠CQ∴若△BPD≌△CPQ,且∠B=∠C,則BP=PC=4cm,CQ=BD=5cm,∴點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間t=s,∴cm/s;(4)設(shè)經(jīng)過(guò)x秒后點(diǎn)P與點(diǎn)Q第一次相遇.由題意,得x=3x+2×10,解得∴經(jīng)過(guò)s點(diǎn)P與點(diǎn)Q第一次相遇.【點(diǎn)睛】本題考查動(dòng)點(diǎn)問(wèn)題,解題關(guān)鍵還是全等的證明和利用,將動(dòng)點(diǎn)問(wèn)題視為定點(diǎn)問(wèn)題來(lái)分析可簡(jiǎn)化思考過(guò)程.7.(1)①100;②x=y+s+t;(2)見(jiàn)詳解.【解析】【分析】(1)①利用三角形的內(nèi)角和定理即可解決問(wèn)題;②結(jié)論:x=y+s+t.利用三角形內(nèi)角和定理即可證明;(2)分6種情形分別求解即可解決問(wèn)題.【詳解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案為:100.②結(jié)論:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之間所有可能的數(shù)量關(guān)系:如圖1:s+x=t+y;如圖2:s+y=t+x;如圖3:y=x+s+t;如圖4:x+y+s+t=360°;如圖5:t=s+x+y;如圖6:s=t+x+y;【點(diǎn)睛】本題考查三角形的內(nèi)角和定理,三角形的外角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問(wèn)題.8.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由詳見(jiàn)解析;(4)∠2=90°+∠1-α,理由詳見(jiàn)解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四邊形的內(nèi)角和即可;(2)同(1)方法即可;(3)利用平角的定義和三角形的內(nèi)角和即可得出結(jié)論;(4)利用三角形的內(nèi)角和和外角的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根據(jù)四邊形的內(nèi)角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案為:150;(2)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根據(jù)四邊形的內(nèi)角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案為:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如圖3,設(shè)DP與BE的交點(diǎn)為F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如圖4,設(shè)PE與AC的交點(diǎn)為G,∵∠PGD=∠EGC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α.【點(diǎn)睛】此題是三角形綜合題,主要考查了四邊形的內(nèi)角和,三角形的內(nèi)角和,三角形的外角的性質(zhì),平角的定義,解本題的關(guān)鍵是將∠1,∠2,α轉(zhuǎn)化到一個(gè)三角形或四邊形中,是一道比較簡(jiǎn)單的中考??碱}.9.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)結(jié)論:,證明見(jiàn)解析.【解析】【分析】(1)先根據(jù)直角三角形的性質(zhì)得出,再根據(jù)角平分線的性質(zhì)可得,然后根據(jù)三角形的判定定理與性質(zhì)可得,最后根據(jù)等邊三角形的判定即可得證;(2)如圖(見(jiàn)解析),延長(zhǎng)ED使得,連接MF,先根據(jù)直角三角形的性質(zhì)、等邊三角形的判定得出是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證;(3)如圖(見(jiàn)解析),參照題(2),先證是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證.【詳解】(1)是的角平分線,在和中,是等邊三角形;(2)如圖,延長(zhǎng)ED使得,連接MF,是的角平分線,是等邊三角形,即在和中,,即即;(3)結(jié)論:,證明過(guò)程如下:如圖,延長(zhǎng)BD使得,連接NH由(2)可知,是等邊三角形,即在和中,,即即.【點(diǎn)睛】本題考查了直角三角形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),較難的是題(2)和(3),通過(guò)作輔助線,構(gòu)造一個(gè)等邊三角形是解題關(guān)鍵.10.(1);(2);(3)見(jiàn)解析.【解析】【分析】(1)根據(jù)簡(jiǎn)單的分式可得,相鄰兩個(gè)數(shù)的積的倒數(shù)等于它們的倒數(shù)之差,即可得到和(2)根據(jù)(1)規(guī)律將乘法寫(xiě)成減法的形式,可以觀察出前一項(xiàng)的減數(shù)等于后一項(xiàng)的被減數(shù),因此可得它們的和.(3)首先利用(2)的和的結(jié)果將左邊化簡(jiǎn),再利用分式方程的解法求解即可.【詳解】解:(1),;故答案為(2)原式=;(3)已知等式整理得:所以,原方程即:,方程的兩邊同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=3,檢驗(yàn):把x=3代入x(x+5)=24≠0,∴原方程的解為:x=3.【點(diǎn)睛】本題主要考查學(xué)生的歸納總結(jié)能力,關(guān)鍵在于根據(jù)簡(jiǎn)單的數(shù)的運(yùn)算尋找規(guī)律,是考試的熱點(diǎn).11.(1)①;②42≤a<54;(2)m=2n【解析】【分析】(1)①構(gòu)建方程組即可解決問(wèn)題;②根據(jù)不等式即可解決問(wèn)題;(2)利用恒等式的性質(zhì),根據(jù)關(guān)系式即可解決問(wèn)題.【詳解】解:(1)①由題意得,解得,②由題意得,解不等式①得p>-1.解不等式②得p≤,∴-1<p≤,∵恰好有3個(gè)整數(shù)解,∴2≤<3.∴42≤a<54;(2)由題意:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵對(duì)任意有理數(shù)x,y都成立,∴m=2n.【點(diǎn)睛】本題考查一元一次不等式、二元一次方程組、恒等式等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,屬于中考常考題型.12.(1)30,100;(2),見(jiàn)解析;(3)可以,或【解析】【分析】(1)根據(jù)平角的定義,可求出∠EDC的度數(shù),根據(jù)三角形內(nèi)和定理,即可求出∠DEC;(2)當(dāng)AB=DC時(shí),利用AAS可證明ΔABD?ΔDCE,即可得出AB=DC=3;(3)假設(shè)ΔADE是等腰三角形,分為三種情況討論:①當(dāng)DA=DE時(shí),求出∠DAE=∠DEA=70°,求出∠BAC,根據(jù)三角形的內(nèi)角和定理求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠BDA即可;②當(dāng)AD=AE時(shí),∠ADE=∠AED=40°,根據(jù)∠AED>∠C,得出此時(shí)不符合;③當(dāng)EA=ED時(shí),求出∠DAC,求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠ADB.【詳解】(1)在△BAD中,∵∠B=50°,∠BDA=100°,∴,.故答案為,.(2)當(dāng)時(shí),,理由如下:∵,∴∵,∴∵∴在和中∴(3)可以,理由如下:∵,∴分三種情況討論:①當(dāng)時(shí),∵,∴∴∵∴②當(dāng)時(shí),∵∴又∵∴∴點(diǎn)D與點(diǎn)B重合,不合題意.③當(dāng)時(shí),∴∵∴綜上所述,當(dāng)?shù)亩葦?shù)為或時(shí),是等腰三角形.【點(diǎn)睛】本題考查的是等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理、靈活運(yùn)用分情況討論思想是解題的關(guān)鍵.13.(1)∠BDC=90°+;(2)∠BFC=;(3)∠BMC=90°+.【解析】【分析】(1)由三角形內(nèi)角和可求∠ABC+∠ACB=180°﹣α,由角平分線的性質(zhì)可求∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,由三角形的內(nèi)角和定理可求解;(2)由角平分線的性質(zhì)可得∠FBC=∠ABC,∠FCE=∠ACE,由三角形的外角性質(zhì)可求解;(3)由折疊的性質(zhì)可得∠G=∠BFC=,方法同(1)可求∠BMC=90°+,即可求解.【詳解】解:(1)∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠BCD=∠ACB,∴∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,∴∠BDC=180°﹣(∠DBC+∠BCD)=90°+;(2)∵∠ABC的平分線與∠ACE的平分線交于點(diǎn)F,∴∠FBC=∠ABC,∠FCE=∠ACE,∵∠ACE=∠A+∠ABC,∠FCE=∠BFC+∠FBC,∴∠BFC=∠A=;(3)∵∠GBC的平分線與∠GCB的平分線交于點(diǎn)M,∴方法同(1)可得∠BMC=90°+,∵將△FBC以直線BC為對(duì)稱軸翻折得到△GBC,∴∠G=∠BFC=,∴∠BMC=90°+.【點(diǎn)睛】此題考查三角形的內(nèi)角和定理,三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和,角平分線的性質(zhì)定理,折疊的性質(zhì).14.(1)時(shí),點(diǎn)位于線段的垂直平分線上;(2);(3)不存在,理由見(jiàn)解析.【解析】【分析】(1)根據(jù)題意求出BP,CQ,結(jié)合圖形用含t的代數(shù)式表示CP的長(zhǎng)度,根據(jù)線段垂直平分線的性質(zhì)得到CP=CQ,列式計(jì)算即可;(2)根據(jù)全等三角形的對(duì)應(yīng)邊相等列式計(jì)算;(3)根據(jù)全等三角形的對(duì)應(yīng)邊相等列式計(jì)算,判斷即可.【詳解】解:(1)由題意得,則,當(dāng)點(diǎn)位于線段的垂直平分線上時(shí),,∴,解得,,則當(dāng)時(shí),點(diǎn)位于線段的垂直平分線上;(2)∵為的中點(diǎn),,∴,∵,∴,∴,解得,,則當(dāng)時(shí),;(3)不存在,∵,∴,則解得,,,∴不存在某一時(shí)刻,使.【點(diǎn)睛】本題考查的是幾何動(dòng)點(diǎn)運(yùn)動(dòng)問(wèn)題、全等三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì),掌握全等三角形的對(duì)應(yīng)邊相等是解題的關(guān)鍵.15.(1)2;(2)4【解析】【分析】(1)根據(jù)題意可直接求等腰直角三角形EAC的面積即可;(2)延長(zhǎng)MN到K,使NK=GH,連接FK、FH、FM,由(1)易證,則有FK=FH,因?yàn)镠M=GH+MN易證,故可求解.【詳解】(1)由題意知,故答案為2;(2)延長(zhǎng)MN到K,使NK=GH,連接FK、FH、FM,如圖所示:FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∠FNK=∠FGH=90°,,F(xiàn)H=FK,又FM=FM,HM=KM=MN+GH=MN+NK,,MK=FN=2cm,.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,關(guān)鍵是根據(jù)截長(zhǎng)補(bǔ)短法及割補(bǔ)法求面積的運(yùn)用.16.(1)①70;②∠F=∠BED,證明見(jiàn)解析;(2)2∠F+∠BED=360°;(3)【解析】【分析】(1)①過(guò)F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過(guò)E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合①的結(jié)論即可說(shuō)明∠BED與∠BFD之間的數(shù)量關(guān)系;(3)通過(guò)對(duì)的計(jì)算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過(guò)F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過(guò)E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點(diǎn)睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應(yīng)用,在解答此題時(shí)要注意作出輔助線,構(gòu)造出平行線求解.17.(1)10°,100°;(2)①55°<α<85°;②∠1與∠2度數(shù)的和不變,理由見(jiàn)解析③55°<α≤60°.【解析】【分析】(1)當(dāng)∠EDA=∠B=40°時(shí),,得出30°+α=40°,即可得出結(jié)果;當(dāng)時(shí),DE⊥AB,得出50°+α+30°=180°,即可得出結(jié)果;(2)①由已知得出∠ACD=45°,∠A=50°,推出∠CDA=85°,當(dāng)點(diǎn)C在DE邊上時(shí),α+30°=85°,解得α=55°,當(dāng)點(diǎn)C在DF邊上時(shí),α=85°,即可得出結(jié)果;②連接MN,由三角形內(nèi)角和定理得出∠CNM+∠CMN+∠MCN=180°,則∠CNM+∠CMN=90°,由三角形內(nèi)角和定理得出∠DNM+∠DMN+∠MDN=180°,即∠2+∠CNM+∠CMN+∠1+∠MDN=180°,即可得出結(jié)論;③由,∠1+∠2=60°,得出∠2≥2(60°?∠2),解得∠2≥40°,由三角形內(nèi)角和定理得出∠2+∠NDM+α+∠A=180°,即∠2+30°+α+50°=180°,則∠2=100°?α,得出100°?α≥40°,解得α≤60°,再由當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),55°<α<85°,即可得出結(jié)果.【詳解】解:(1)∵∠B=40°,∴當(dāng)∠EDA=∠B=40°時(shí),,而∠EDF=30°,∴,解得:α=10°;當(dāng)時(shí),DE⊥AB,此時(shí)∠A+∠EDA=180°,,∴,解得:α=100°;故答案為10°,100°;(2)①∵∠ABC=40°,CD平分∠ACB,∴∠ACD=45°,∠A=50°,∴∠CDA=85°,當(dāng)點(diǎn)C在DE邊上時(shí),,解得:,當(dāng)點(diǎn)C在DF邊上時(shí),,∴當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),;故答案為:;②∠1與∠2度數(shù)的和不變;理由如下:連接MN,如圖所示:在△CMN中,∵∠CNM+∠CMN+∠MCN=180°,∴∠CNM+∠CMN=90°,在△MND中,∵∠DNM+∠DMN+∠MDN=180°,即∠2+∠CNM+∠CMN+∠1+∠MDN=180°,∴;③∵∠2≥2∠1,∠1+∠2=60°,∴,∴∠2≥40°,∵,即,∴,∴,解得:α≤60°,∵當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),,∴∠α的度數(shù)范圍為.【點(diǎn)睛】本題考查了平行線的性質(zhì)、直角三角形的性質(zhì)、三角形內(nèi)角和定理、不等式等知識(shí),合理選擇三角形后利用三角形內(nèi)角和定理列等量關(guān)系是解決問(wèn)題的關(guān)鍵.18.(1)①60°;②60°;(2)∠BFE=α.【解析】【分析】(1)①先證明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先證明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)證明△AEC≌△CDB得到∠E=∠D,則∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【詳解】(1)如圖①中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案為60.(2)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論