版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
數(shù)學蘇教七年級下冊期末解答題壓軸綜合測試題目(比較難)解析一、解答題1.閱讀下列材料并解答問題:在一個三角形中,如果一個內角的度數(shù)是另一個內角度數(shù)的3倍,那么這樣的三角形我們稱為“夢想三角形”例如:一個三角形三個內角的度數(shù)分別是120°,40°,20°,這個三角形就是一個“夢想三角形”.反之,若一個三角形是“夢想三角形”,那么這個三角形的三個內角中一定有一個內角的度數(shù)是另一個內角度數(shù)的3倍.(1)如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內角的度數(shù)為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(點C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢想三角形”,為什么?(3)如圖2,點D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點E,在DC上取一點F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢想三角形”,求∠B的度數(shù).2.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個角度數(shù)改為:當,,則__________.當,時,則__________.當,時,則__________.當,時,則__________.()若和的度數(shù)改為用字母和來表示,你能找到與和之間的關系嗎?請直接寫出你發(fā)現(xiàn)的結論.3.模型與應用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點O,若∠M1OMn=m°.在(2)的基礎上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)4.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結FA、FB,E是射線FA上的一點,若,,且,求n的值.5.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點落在內的點處.(1)若,________.(2)如圖①,若各個角度不確定,試猜想,,之間的數(shù)量關系,直接寫出結論.②當點落在四邊形外部時(如圖②),(1)中的猜想是否仍然成立?若成立,請說明理由,若不成立,,,之間又存在什么關系?請說明.(3)應用:如圖③:把一個三角形的三個角向內折疊之后,且三個頂點不重合,那么圖中的和是________.6.如圖1,已知,是直線,外的一點,于點,交于點,滿足.(1)求的度數(shù);(2)如圖2,射線從出發(fā),以每秒的速度繞點按逆時針方向勻速旋轉,當?shù)竭_時立刻返回至,然后繼續(xù)按上述方式旋轉;射線從出發(fā),以相同的速度繞點按順時針方向旋轉至后停止運動,此時射線也停止運動.若射線、射線同時開始運動,設運動時間為秒.①當射線平分時,求的度數(shù);②當直線與直線相交所成的銳角是時,則________.7.(1)證明:兩條平行線被第三條直線所截,一對同旁內角的角平分線互相垂直.已知:如圖,AB∥CD,.求證:.證明:(2)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥FN,∠AEM與∠CFN的角平分線相交于點O.求證:EO⊥FO.(3)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥PN,MP∥NF,∠AEM與∠CFN的角平分線相交于點O,∠P=102°,求∠O的度數(shù).8.模型規(guī)律:如圖1,延長交于點D,則.因為凹四邊形形似箭頭,其四角具有“”這個規(guī)律,所以我們把這個模型叫做“箭頭四角形”.模型應用(1)直接應用:①如圖2,,則__________;②如圖3,__________;(2)拓展應用:①如圖4,、的2等分線(即角平分線)、交于點,已知,,則__________;②如圖5,、分別為、的10等分線.它們的交點從上到下依次為、、、…、.已知,,則__________;③如圖6,、的角平分線、交于點D,已知,則__________;④如圖7,、的角平分線、交于點D,則、、之同的數(shù)量關系為__________.9.(想一想)在三角形的三條重要線段(高、中線、角平分線)中,能把三角形面積平分的是三角形的______;(比一比)如圖,已知,點、在直線上,點、在直線上,連接、、、,與相交于點,則的面積_______的面積;(填“>”“<”或“=”)(用一用)如圖所示,學校種植園有一塊四邊形試驗田STPQ.現(xiàn)準備過點修一條筆直的小路(小路面積忽略不計),將試驗田分成面積相等的兩部分,安排“拾穗班”、“鋤禾班”兩班種植蔬菜,進行勞動實踐,王老師提醒同學們先把四邊形轉化為同面積的三角形,再把三角形的面積二等分即可.請你在下圖中畫出小路,并保留作圖痕跡.10.認真閱讀下面關于三角形內外角平分線所夾角的探究片段,完成所提出的問題.(探究1):如圖1,在ΔABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90o+∠A,(請補齊空白處)理由如下:∵BO和CO分別是∠ABC和∠ACB的角平分線,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180o.∴∠1+∠2=(∠ABC+∠ACB)=(180o-∠A)=90o-∠A,∴∠BOC=180o-(∠1+∠2)=180o-(________)=90o+∠A.(探究2):如圖2,已知O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關系?請說明理由.(應用):如圖3,在RtΔAOB中,∠AOB=90o,已知AB不平行與CD,AC、BD分別是∠BAO和∠ABO的角平分線,又CE、DE分別是∠ACD和∠BDC的角平分線,則∠E=_______;(拓展):如圖4,直線MN與直線PQ相交于O,∠MOQ=60o,點A在射線OP上運動,點B在射線OM上運動,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其延長線交于E、F,在ΔAEF中,如果有一個角是另一個角的4倍,則∠ABO=______.【參考答案】一、解答題1.(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內角和等于180°,如果一個“夢想三角形”有一個角為108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內角和等于180°,如果一個“夢想三角形”有一個角為108°,可得另兩個角的和為72°,由三角形中一個內角是另一個內角的3倍時,可以分別求得最小角為180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比較得出答案即可;(2)根據(jù)垂直的定義、三角形內角和定理求出∠ABO、∠OAC的度數(shù),根據(jù)“夢想三角形”的定義判斷即可;(3)根據(jù)同角的補角相等得到∠EFC=∠ADC,根據(jù)平行線的性質得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根據(jù)角平分線的定義得到∠ADE=∠CDE,求得∠B=∠BCD,根據(jù)“夢想三角形”的定義求解即可.【詳解】解:當108°的角是另一個內角的3倍時,最小角為180°﹣108°﹣108÷3°=36°,當180°﹣108°=72°的角是另一個內角的3倍時,最小角為72°÷(1+3)=18°,因此,這個“夢想三角形”的最小內角的度數(shù)為36°或18°.故答案為:18°或36°.(2)△AOB、△AOC都是“夢想三角形”證明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB為“夢想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“夢想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“夢想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.【點睛】本題考查的是三角形內角和定理、“夢想三角形”的概念,用分類討論的思想解決問題是解本題的關鍵.2.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當時,;當時,.【分析】(1)先利用三角形內角和定理求出的度數(shù),再根據(jù)角平分線和高的性質分別得出和的度數(shù),進而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當時,;當時,.【分析】(1)先利用三角形內角和定理求出的度數(shù),再根據(jù)角平分線和高的性質分別得出和的度數(shù),進而可求和的度數(shù);(2)先利用三角形內角和定理求出的度數(shù),再根據(jù)角平分線和高的性質分別得出和的度數(shù),則前三問利用即可得出答案,第4問利用即可得出答案;(3)按照(2)的方法,將相應的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,.(3)當時,即時,∵,,∴.∵平分,∴.∵是高,,,;當時,即時,∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當時,;當時,.【點睛】本題主要考查三角形內角和定理和三角形的角平分線,高,掌握三角形內角和定理和直角三角形兩銳角互余是解題的關鍵.3.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應用】(2)分別過E點,F(xiàn)點,G點,H點作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過點O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點睛:本題考查了平行線的性質,角平分線的定義,解決此類題目,過拐點作平行線是解題的關鍵,準確識圖理清圖中各角度之間的關系也很重要.4.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質得到;進一步求得,,然后根據(jù)三角形外角的性質解答即可;(3)設BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經檢驗:是原方程的根,且符合題意.【點睛】本題主要考查平行線的性質及應用,正確作出輔助線、構造平行線、再利用平行線性質進行求解是解答本題的關鍵.5.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結合三角形內角和定理和折疊變換的性質求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結合三角形內角和定理和折疊變換的性質求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,由兩個平角∠AEB和∠ADC得:∠1+∠2等于360°與四個折疊角的差,化簡得結果;②利用兩次外角定理得出結論;(3)由折疊可知∠1+∠2+∠3+∠4+∠5+∠6等于六邊形的內角和減去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的內角和定理即可求解.【詳解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE=180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;(2)①,理由如下由折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;②,理由如下:∵是的一個外角∴.∵是的一個外角∴又∵∴(3)如圖由題意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【點睛】題主要考查了折疊變換、三角形、四邊形內角和定理.注意折疊前后圖形全等;三角形內角和為180°;四邊形內角和等于360度.6.(1);(2)①;②.【分析】(1)根據(jù),,可以得到,即,再根據(jù)三角形外角定理求解即可.(2)①射線平分時,可知此時,根據(jù)題意可以確定運動時間t=3s或t=9s,從而計算的度數(shù)即可;②用含t的解析:(1);(2)①;②.【分析】(1)根據(jù),,可以得到,即,再根據(jù)三角形外角定理求解即可.(2)①射線平分時,可知此時,根據(jù)題意可以確定運動時間t=3s或t=9s,從而計算的度數(shù)即可;②用含t的代數(shù)式表示出所成的角度,然后進行動態(tài)分析求解即可.【詳解】解(1)∵,∴∴又∵∴(2)①∵射線平分∴∵射線從出發(fā),以相同的速度繞點按順時針方向旋轉至后停止運動,此時射線也停止運動,∴運動的總時間∵射線從出發(fā),以每秒的速度繞點按逆時針方向勻速旋轉,當?shù)竭_時立刻返回至,然后繼續(xù)按上述方式旋轉∴第一次,,第二次時,,第三次時,以此類推故當?shù)谝淮?,∴故第二次時,∴故第三次時,∴∵∴②如圖所示直線與直線相交所成的銳角是∴∵,,∴∴又∵∴第一種情況,當時∴當時解得當解得第二種情況,當∴此時t無解,第三種情況當同理可以計算出,綜上所述:【點睛】本題主要考查了三角形內角和定理,解題的關鍵在于能夠正確的分析動態(tài)過程.7.(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質和角平分線定義即可證解析:(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質和角平分線定義即可證明;(2)延長交于點,過點作交于點,結合(1)的方法即可證明;(3)延長、交于點,過點作交于點.結合(1)的方法可得,再根據(jù)角平分線定義即可求出結果.【詳解】(1)已知:如圖①,,直線分別交直線,于點,,、分別平分、,求證:;證法,,、分別平分、,.,.;證法2:如圖,過點作交直線于點.,,、分別平分、,.,,..;故答案為:直線分別交直線,于點,,、分別平分、,;(2)證明:如圖,延長交于點,過點作交于點,,,,.、分別平分、,,,,..;(3)解:如圖,延長、交于點,過點作交于點.,,,由(1)證法2可知,、分別平分、,.【點睛】本題考查了平行線的判定與性質,角平分線的定義,解決本題的關鍵是掌握平行線的判定與性質.8.(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根據(jù)題干中的等式直接計算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DO解析:(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根據(jù)題干中的等式直接計算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入計算即可;(2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入計算可得;②同理可得∠BO7C=∠BOC-(∠BOC-∠A),代入計算即可;③利用∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)計算可得;④根據(jù)兩個凹四邊形ABOD和ABOC得到兩個等式,聯(lián)立可得結論.【詳解】解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°;(2)①∠BO1C=∠BOC-∠OBO1-∠OCO1=∠BOC-(∠ABO+∠ACO)=∠BOC-(∠BOC-∠A)=∠BOC-(120°-50°)=120°-35°=85°;②∠BO7C=∠BOC-(∠BOC-∠A)=120°-(120°-50°)=120°-10°=110°;③∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)=180°-(120°-44°)=142°;④∠BOD=∠BOC=∠B+∠D+∠BAC,∠BOC=∠B+∠C+∠BAC,聯(lián)立得:∠B-∠C+2∠D=0.【點睛】本題主要考查了新定義—箭頭四角形,利用了三角形外角的性質,還考查了角平分線的定義,圖形類規(guī)律,解題的關鍵是理解箭頭四角形,并能熟練運用其性質.9.想一想:中線;比一比:=;用一用:見解析【分析】想一想:三角形中線把三角形底邊等分成兩份,過頂點向底邊作垂線,高相同;比一比:和共底邊BC,,兩平行線之間的距離相等,即和高相等;用一用:利用解析:想一想:中線;比一比:=;用一用:見解析【分析】想一想:三角形中線把三角形底邊等分成兩份,過頂點向底邊作垂線,高相同;比一比:和共底邊BC,,兩平行線之間的距離相等,即和高相等;用一用:利用“想一想”中的中線和“比一比”的平行線進行面積的二等分.【詳解】想一想:三角形中線把三角形底邊等分成兩份,過頂點向底邊作垂線,高相同,故能把三角形面積平分的是三角形的中線.比一比:∵∴兩平行線之間的距離相等,即A到BC的距離=D到BC的距離又∵和共底邊BC∴和同底,等高,面積相等.用一用:如圖所示,連接SP,過Q點作QM∥SP,延長TP,交QM與點M,連接SP,取TM的中點N.SN即為所求筆直的小路.證明:∵QM∥SP∴∵TM的中點N∴∴【點睛】本題考查中線和平行線的距離.連接三角形的一個頂點和它所對的邊的中點的線段叫做三角形的中線.兩條平行線的距離處處相等.10.【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線的定義可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線的定義可得∠1=∠ABC,∠2=∠ACB,根據(jù)三角形的內角和定理可得∠1+∠2=90o-∠A,再根據(jù)三角形的內角和定理即可得出結論;【探究2】如圖2,由三角形的外角性質和角平分線的定義可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根據(jù)三角形的內角和定理即可得出結論;【應用】延長AC與BD,設交點為G,如圖5,由【探究1】的結論可得∠G的度數(shù),于是可得∠GCD+∠GDC的度數(shù),然后根據(jù)角平分線的定義和角的和差可得∠1+∠2的度數(shù),再根據(jù)三角形的內角和定理即可求出結果;【拓展】根據(jù)角平分線的定義和平角的定義可得∠EAF=90°,然后
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 手工火焰切割工創(chuàng)新實踐能力考核試卷含答案
- 環(huán)保技術與珠寶行業(yè)創(chuàng)新的協(xié)同效應研究-洞察及研究
- 2025鋅合金材料市場潛力與投資發(fā)展方向研究報告
- 2025郵政行業(yè)市場競爭態(tài)勢研究及服務模式創(chuàng)新與行業(yè)未來增長潛力研討報告
- 2025郵政快遞行業(yè)市場競爭分析及投資發(fā)展評估規(guī)劃分析研究報告
- 商務數(shù)據(jù)分析師變更管理能力考核試卷含答案
- 2025郵政快遞服務行業(yè)發(fā)展現(xiàn)狀研究及未來競爭策略報告
- 2025郵政快遞業(yè)數(shù)字化服務提升與多元業(yè)務拓展研究分析報告
- 2025郵政業(yè)務轉型研究及跨境電商服務與行業(yè)政策影響分析報告
- 多渠道整合策略-洞察及研究
- 防范非計劃性拔管
- 2025年考研政治《馬克思主義基本原理》模擬卷
- (新教材)部編人教版三年級上冊語文 第25課 手術臺就是陣地 教學課件
- 2026天津農商銀行校園招聘考試歷年真題匯編附答案解析
- 2025重慶市環(huán)衛(wèi)集團有限公司招聘27人筆試歷年參考題庫附帶答案詳解
- 鉆井安全操作規(guī)程
- 精密減速機行業(yè)發(fā)展現(xiàn)狀及趨勢預測報告2026-2032
- 中小學《信息技術》考試試題及答案
- 2025及未來5年掛鐘機芯項目投資價值分析報告
- IPO融資分析師融資報告模板
- 搏擊裁判員培訓課件
評論
0/150
提交評論