2025年葉縣高考數(shù)學(xué)四模試卷含解析_第1頁(yè)
2025年葉縣高考數(shù)學(xué)四模試卷含解析_第2頁(yè)
2025年葉縣高考數(shù)學(xué)四模試卷含解析_第3頁(yè)
2025年葉縣高考數(shù)學(xué)四模試卷含解析_第4頁(yè)
2025年葉縣高考數(shù)學(xué)四模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025年葉縣高考數(shù)學(xué)四模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,某幾何體的三視圖是由三個(gè)邊長(zhǎng)為2的正方形和其內(nèi)部的一些虛線(xiàn)構(gòu)成的,則該幾何體的體積為()A. B. C.6 D.與點(diǎn)O的位置有關(guān)2.已知正四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.3.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線(xiàn)對(duì)稱(chēng);②圖象C關(guān)于點(diǎn)對(duì)稱(chēng);③由y=2sin2x的圖象向右平移個(gè)單位長(zhǎng)度可以得到圖象C.A.① B.①② C.②③ D.①②③4.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知,則()A. B. C. D.6.若函數(shù)的圖象經(jīng)過(guò)點(diǎn),則函數(shù)圖象的一條對(duì)稱(chēng)軸的方程可以為()A. B. C. D.7.直線(xiàn)l過(guò)拋物線(xiàn)的焦點(diǎn)且與拋物線(xiàn)交于A(yíng),B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.78.已知點(diǎn)是拋物線(xiàn)的對(duì)稱(chēng)軸與準(zhǔn)線(xiàn)的交點(diǎn),點(diǎn)為拋物線(xiàn)的焦點(diǎn),點(diǎn)在拋物線(xiàn)上且滿(mǎn)足,若取得最大值時(shí),點(diǎn)恰好在以為焦點(diǎn)的橢圓上,則橢圓的離心率為()A. B. C. D.9.在復(fù)平面內(nèi),復(fù)數(shù)(,)對(duì)應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線(xiàn)Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國(guó)數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.1610.某個(gè)小區(qū)住戶(hù)共200戶(hù),為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶(hù)進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過(guò)15m3的住戶(hù)的戶(hù)數(shù)為()A.10 B.50 C.60 D.14011.設(shè)函數(shù),當(dāng)時(shí),,則()A. B. C.1 D.12.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-2二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列{an}的前n項(xiàng)和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數(shù)列{}前2020項(xiàng)和為_(kāi)____14.已知隨機(jī)變量服從正態(tài)分布,,則__________.15.已知數(shù)列滿(mǎn)足:點(diǎn)在直線(xiàn)上,若使、、構(gòu)成等比數(shù)列,則______16.已知四棱錐的底面ABCD是邊長(zhǎng)為2的正方形,且.若四棱錐P-ABCD的五個(gè)頂點(diǎn)在以4為半徑的同一球面上,當(dāng)PA最長(zhǎng)時(shí),則______________;四棱錐P-ABCD的體積為_(kāi)_____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線(xiàn)l過(guò)點(diǎn),且傾斜角為,以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為.求直線(xiàn)l的參數(shù)方程和曲線(xiàn)C的直角坐標(biāo)方程,并判斷曲線(xiàn)C是什么曲線(xiàn);設(shè)直線(xiàn)l與曲線(xiàn)C相交與M,N兩點(diǎn),當(dāng),求的值.18.(12分)如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點(diǎn),且點(diǎn)的縱坐標(biāo)是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點(diǎn),且點(diǎn)的橫坐標(biāo)為,求的值.19.(12分)已知等比數(shù)列,其公比,且滿(mǎn)足,和的等差中項(xiàng)是1.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,是數(shù)列的前項(xiàng)和,求使成立的正整數(shù)的值.20.(12分)的內(nèi)角的對(duì)邊分別為,且.(1)求;(2)若,點(diǎn)為邊的中點(diǎn),且,求的面積.21.(12分)已知橢圓:()的離心率為,且橢圓的一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合.過(guò)點(diǎn)的直線(xiàn)交橢圓于,兩點(diǎn),為坐標(biāo)原點(diǎn).(1)若直線(xiàn)過(guò)橢圓的上頂點(diǎn),求的面積;(2)若,分別為橢圓的左、右頂點(diǎn),直線(xiàn),,的斜率分別為,,,求的值.22.(10分)已知函數(shù).(Ⅰ)已知是的一個(gè)極值點(diǎn),求曲線(xiàn)在處的切線(xiàn)方程(Ⅱ)討論關(guān)于的方程根的個(gè)數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù)三視圖還原直觀(guān)圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結(jié)論.【詳解】如下圖是還原后的幾何體,是由棱長(zhǎng)為2的正方體挖去一個(gè)四棱錐構(gòu)成的,正方體的體積為8,四棱錐的底面是邊長(zhǎng)為2的正方形,頂點(diǎn)O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.本題考查三視圖求幾何體的體積,還原幾何體的直觀(guān)圖是解題的關(guān)鍵,屬于基礎(chǔ)題.2.C【解析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長(zhǎng)為,則,所以,故C為正確答案.考點(diǎn):異面直線(xiàn)所成的角.3.B【解析】

根據(jù)三角函數(shù)的對(duì)稱(chēng)軸、對(duì)稱(chēng)中心和圖象變換的知識(shí),判斷出正確的結(jié)論.【詳解】因?yàn)?,又,所以①正確.,所以②正確.將的圖象向右平移個(gè)單位長(zhǎng)度,得,所以③錯(cuò)誤.所以①②正確,③錯(cuò)誤.故選:B本小題主要考查三角函數(shù)的對(duì)稱(chēng)軸、對(duì)稱(chēng)中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.4.B【解析】

分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B本題考查了充分必要條件,屬于簡(jiǎn)單題.5.B【解析】

利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡(jiǎn)求解即可.【詳解】,本題正確選項(xiàng):本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.6.B【解析】

由點(diǎn)求得的值,化簡(jiǎn)解析式,根據(jù)三角函數(shù)對(duì)稱(chēng)軸的求法,求得的對(duì)稱(chēng)軸,由此確定正確選項(xiàng).【詳解】由題可知.所以令,得令,得故選:B本小題主要考查根據(jù)三角函數(shù)圖象上點(diǎn)的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對(duì)稱(chēng)軸的求法,屬于中檔題.7.B【解析】

根據(jù)拋物線(xiàn)中過(guò)焦點(diǎn)的兩段線(xiàn)段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線(xiàn)標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€(xiàn)l過(guò)拋物線(xiàn)的焦點(diǎn),由過(guò)拋物線(xiàn)焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€(xiàn)段長(zhǎng)度,都大于0,由基本不等式可知,此時(shí)所以選B本題考查了拋物線(xiàn)的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題.8.B【解析】

設(shè),利用兩點(diǎn)間的距離公式求出的表達(dá)式,結(jié)合基本不等式的性質(zhì)求出的最大值時(shí)的點(diǎn)坐標(biāo),結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因?yàn)槭菕佄锞€(xiàn)的對(duì)稱(chēng)軸與準(zhǔn)線(xiàn)的交點(diǎn),點(diǎn)為拋物線(xiàn)的焦點(diǎn),所以,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí),,點(diǎn)在以為焦點(diǎn)的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線(xiàn)的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線(xiàn)的定義來(lái)求解.9.D【解析】

根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.10.C【解析】從頻率分布直方圖可知,用水量超過(guò)15m3的住戶(hù)的頻率為,即分層抽樣的50戶(hù)中有0.3×50=15戶(hù)住戶(hù)的用水量超過(guò)15立方米所以小區(qū)內(nèi)用水量超過(guò)15立方米的住戶(hù)戶(hù)數(shù)為,故選C11.A【解析】

由降冪公式,兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時(shí),,,∴,由題意,∴.故選:A.本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.12.B【解析】

由函數(shù)解析式中含絕對(duì)值,所以去絕對(duì)值并畫(huà)出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時(shí),有最大值,當(dāng)時(shí),有最小值.故選:B.本題考查了絕對(duì)值函數(shù)圖象的畫(huà)法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.可得:2().利用裂項(xiàng)求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.,滿(mǎn)足上式,.∴2().∴數(shù)列{}前2020項(xiàng)和為2(1)=2(1).故答案為:.本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.14.0.22.【解析】

正態(tài)曲線(xiàn)關(guān)于x=μ對(duì)稱(chēng),根據(jù)對(duì)稱(chēng)性以及概率和為1求解即可。【詳解】本題考查正態(tài)分布曲線(xiàn)的特點(diǎn)及曲線(xiàn)所表示的意義,是一個(gè)基礎(chǔ)題.15.13【解析】

根據(jù)點(diǎn)在直線(xiàn)上可求得,由等比中項(xiàng)的定義可構(gòu)造方程求得結(jié)果.【詳解】在上,,成等比數(shù)列,,即,解得:.故答案為:.本題考查根據(jù)三項(xiàng)成等比數(shù)列求解參數(shù)值的問(wèn)題,涉及到等比中項(xiàng)的應(yīng)用,屬于基礎(chǔ)題.16.90°【解析】

易得平面PAD,P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),顯然,PA是圓的直徑時(shí),PA最長(zhǎng);將四棱錐補(bǔ)形為長(zhǎng)方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),易知,當(dāng)P、、A三點(diǎn)共線(xiàn)時(shí),PA達(dá)到最長(zhǎng),此時(shí),PA是圓的直徑,則;又,所以平面ABCD,此時(shí)可將四棱錐補(bǔ)形為長(zhǎng)方體,其體對(duì)角線(xiàn)為,底面邊長(zhǎng)為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).本題四棱錐外接球有關(guān)的問(wèn)題,考查學(xué)生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)曲線(xiàn)是焦點(diǎn)在軸上的橢圓;(Ⅱ).【解析】試題分析:(1)由題易知,直線(xiàn)的參數(shù)方程為,(為參數(shù)),;曲線(xiàn)的直角坐標(biāo)方程為,橢圓;(2)將直線(xiàn)代入橢圓得到,所以,解得.試題解析:(Ⅰ)直線(xiàn)的參數(shù)方程為.曲線(xiàn)的直角坐標(biāo)方程為,即,所以曲線(xiàn)是焦點(diǎn)在軸上的橢圓.(Ⅱ)將的參數(shù)方程代入曲線(xiàn)的直角坐標(biāo)方程為得,,得,,18.(1)(2)【解析】

(1)依題意,任意角的三角函數(shù)的定義可知,,進(jìn)而求出.在利用余弦的和差公式即可求出.(2)根據(jù)鈍角的終邊與單位圓交于點(diǎn),且點(diǎn)的橫坐標(biāo)是,得出,進(jìn)而得出,利用正弦的和差公式即可求出,結(jié)合為銳角,為鈍角,即可得出的值.【詳解】解:因?yàn)殇J角的終邊與單位圓交于點(diǎn),點(diǎn)的縱坐標(biāo)是,所以由任意角的三角函數(shù)的定義可知,.從而.(1)于是.(2)因?yàn)殁g角的終邊與單位圓交于點(diǎn),且點(diǎn)的橫坐標(biāo)是,所以,從而.于是.因?yàn)闉殇J角,為鈍角,所以從而.本題本題考查正弦函數(shù)余弦函數(shù)的定義,考查正弦余弦的兩角和差公式,是基礎(chǔ)題.19.(Ⅰ).(Ⅱ).【解析】

(Ⅰ)由等差數(shù)列中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公比,可得所求通項(xiàng)公式;(Ⅱ),由數(shù)列的錯(cuò)位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿(mǎn)足,和的等差中項(xiàng)是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡(jiǎn)可得:,即為解得:本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的錯(cuò)位相減法求和,以及方程思想和運(yùn)算能力,屬于中檔題.20.(1);(2).【解析】

(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線(xiàn),所以再平方后利用向量的數(shù)量積公式進(jìn)行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因?yàn)闉榈闹芯€(xiàn),所以,兩邊同時(shí)平方可得,故.因?yàn)?所以.所以的面積.本題主要考查了利用正余弦定理與面積公式求解三角形的問(wèn)題,同時(shí)也考查了向量在解三角形中的運(yùn)用,屬于中檔題.21.(1)(2)【解析】

(1)根據(jù)拋物線(xiàn)的焦點(diǎn)求得橢圓的焦點(diǎn),由此求得,結(jié)合橢圓離心率求得,進(jìn)而求得,從而求得橢圓的標(biāo)準(zhǔn)方程,求得橢圓上頂點(diǎn)的坐標(biāo),由此求得直線(xiàn)的方程.聯(lián)立直線(xiàn)的方程和橢圓方程,求得兩點(diǎn)的縱坐標(biāo),由此求得的面積.(2)求得兩點(diǎn)的坐標(biāo),設(shè)出直線(xiàn)的方程,聯(lián)立直線(xiàn)的方程和橢圓方程,寫(xiě)出韋達(dá)定理,由此求得的值,根據(jù)在橢圓上求得的值,由此求得的值.【詳解】(1)因?yàn)閽佄锞€(xiàn)的焦點(diǎn)坐標(biāo)為,所以橢圓的右焦點(diǎn)的坐標(biāo)為,所以,因?yàn)闄E圓的離心率為,所以,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為.其上頂點(diǎn)為,所以直線(xiàn):,聯(lián)立,消去整理得,解得,,所以的面積.(2)由題知,,,設(shè),.由題還可知,直線(xiàn)的斜率不為0,故可設(shè):.由,消去,得,所以所以,又因?yàn)辄c(diǎn)在橢圓上,所以,所以.本小題主要考查拋物線(xiàn)的焦點(diǎn),橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線(xiàn)與橢圓,三角形的面積等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想.22.(Ⅰ);(Ⅱ)見(jiàn)解析【解析】

(Ⅰ)求函數(shù)的導(dǎo)數(shù),利用x=2是f(x)的一個(gè)極值點(diǎn),得f'(2)=0建立方程求出a的值,結(jié)合導(dǎo)數(shù)的幾何意義進(jìn)行求

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論