鄭州澍青醫(yī)學(xué)高等??茖W(xué)校《復(fù)雜數(shù)據(jù)預(yù)處理實(shí)戰(zhàn)》2025-2026學(xué)年第一學(xué)期期末試卷_第1頁
鄭州澍青醫(yī)學(xué)高等??茖W(xué)?!稄?fù)雜數(shù)據(jù)預(yù)處理實(shí)戰(zhàn)》2025-2026學(xué)年第一學(xué)期期末試卷_第2頁
鄭州澍青醫(yī)學(xué)高等專科學(xué)?!稄?fù)雜數(shù)據(jù)預(yù)處理實(shí)戰(zhàn)》2025-2026學(xué)年第一學(xué)期期末試卷_第3頁
鄭州澍青醫(yī)學(xué)高等??茖W(xué)?!稄?fù)雜數(shù)據(jù)預(yù)處理實(shí)戰(zhàn)》2025-2026學(xué)年第一學(xué)期期末試卷_第4頁
鄭州澍青醫(yī)學(xué)高等??茖W(xué)?!稄?fù)雜數(shù)據(jù)預(yù)處理實(shí)戰(zhàn)》2025-2026學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁鄭州澍青醫(yī)學(xué)高等??茖W(xué)?!稄?fù)雜數(shù)據(jù)預(yù)處理實(shí)戰(zhàn)》2025-2026學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)要分析某電商平臺用戶的購買行為隨時間的變化趨勢,以下哪種可視化方法較為合適?()A.折線圖B.柱狀圖C.餅圖D.箱線圖2、數(shù)據(jù)分析中的回歸分析用于研究變量之間的關(guān)系。假設(shè)要探究廣告投入與產(chǎn)品銷售額之間的關(guān)系,以下關(guān)于回歸分析的描述,正確的是:()A.簡單線性回歸一定能準(zhǔn)確反映兩者的關(guān)系,無需考慮其他因素B.不考慮數(shù)據(jù)的正態(tài)性和方差齊性,直接進(jìn)行回歸分析C.在進(jìn)行回歸分析前,對數(shù)據(jù)進(jìn)行預(yù)處理和假設(shè)檢驗(yàn),選擇合適的回歸模型,并評估模型的擬合優(yōu)度和顯著性D.只關(guān)注回歸方程的系數(shù),不考慮模型的殘差和預(yù)測能力3、假設(shè)我們正在分析客戶的購買行為數(shù)據(jù),想要了解客戶購買某一產(chǎn)品的頻率分布。以下哪種統(tǒng)計(jì)量最適合描述這種數(shù)據(jù)?()A.均值B.中位數(shù)C.眾數(shù)D.標(biāo)準(zhǔn)差4、在處理缺失值時,如果缺失值的比例較高且數(shù)據(jù)呈現(xiàn)一定的規(guī)律性,以下哪種方法可能較為有效?()A.基于模型的插補(bǔ)B.多重插補(bǔ)C.隨機(jī)插補(bǔ)D.以上都不是5、在進(jìn)行數(shù)據(jù)可視化時,顏色的選擇和使用可以影響可視化的效果。假設(shè)我們要在一個圖表中區(qū)分不同的類別,以下哪個關(guān)于顏色選擇的原則是重要的?()A.對比度高B.符合文化和認(rèn)知習(xí)慣C.考慮色盲人群的可辨識度D.以上都是6、在數(shù)據(jù)庫中,若要執(zhí)行事務(wù)處理以確保數(shù)據(jù)的一致性,以下哪個特性是關(guān)鍵的?()A.原子性B.一致性C.隔離性D.持久性7、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的原則有很多,其中簡潔明了是一個重要的原則。以下關(guān)于簡潔明了的描述中,錯誤的是?()A.簡潔明了的可視化圖表可以讓讀者更容易理解數(shù)據(jù)的含義B.簡潔明了的可視化圖表應(yīng)該避免使用過多的顏色和裝飾C.簡潔明了的可視化圖表可以通過減少數(shù)據(jù)的維度和細(xì)節(jié)來實(shí)現(xiàn)D.簡潔明了的可視化圖表只適用于簡單的數(shù)據(jù)展示,對于復(fù)雜的數(shù)據(jù)無法處理8、在數(shù)據(jù)倉庫和數(shù)據(jù)集市的建設(shè)中,需要考慮數(shù)據(jù)的整合和存儲。假設(shè)要為一個企業(yè)構(gòu)建數(shù)據(jù)存儲架構(gòu),以下關(guān)于數(shù)據(jù)倉庫和數(shù)據(jù)集市選擇的描述,正確的是:()A.只建立數(shù)據(jù)倉庫,不考慮數(shù)據(jù)集市,認(rèn)為數(shù)據(jù)倉庫能夠滿足所有分析需求B.盲目建立數(shù)據(jù)集市,不與數(shù)據(jù)倉庫進(jìn)行有效的集成和協(xié)調(diào)C.根據(jù)企業(yè)的規(guī)模、業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn),合理規(guī)劃數(shù)據(jù)倉庫和數(shù)據(jù)集市的架構(gòu),確保數(shù)據(jù)的一致性和可用性,并明確它們在數(shù)據(jù)分析中的角色和作用D.不考慮數(shù)據(jù)的更新和維護(hù),只關(guān)注初始的建設(shè)9、數(shù)據(jù)分析中,數(shù)據(jù)挖掘的過程包括多個步驟。以下關(guān)于數(shù)據(jù)挖掘過程的說法中,錯誤的是?()A.數(shù)據(jù)挖掘的過程包括數(shù)據(jù)準(zhǔn)備、數(shù)據(jù)挖掘、結(jié)果解釋和評估等步驟B.數(shù)據(jù)準(zhǔn)備階段包括數(shù)據(jù)清洗、數(shù)據(jù)集成和數(shù)據(jù)轉(zhuǎn)換等工作C.數(shù)據(jù)挖掘階段可以使用多種算法和技術(shù),如決策樹、聚類、關(guān)聯(lián)規(guī)則挖掘等D.數(shù)據(jù)挖掘的結(jié)果不需要進(jìn)行解釋和評估,直接應(yīng)用于實(shí)際問題即可10、關(guān)于數(shù)據(jù)分析中的客戶細(xì)分,假設(shè)要根據(jù)客戶的購買行為、人口統(tǒng)計(jì)信息和在線活動將客戶分為不同的細(xì)分群體。以下哪種細(xì)分方法可能更能揭示客戶的潛在需求和行為模式?()A.RFM模型,基于消費(fèi)頻率、金額和最近消費(fèi)時間B.基于聚類的細(xì)分,自動發(fā)現(xiàn)相似群體C.基于決策樹的細(xì)分,根據(jù)規(guī)則劃分D.不進(jìn)行客戶細(xì)分,對所有客戶采用相同的策略11、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的方法有很多,其中柱狀圖是一種常用的圖表類型。以下關(guān)于柱狀圖的描述中,錯誤的是?()A.柱狀圖可以用來比較不同類別之間的數(shù)據(jù)大小B.柱狀圖可以顯示數(shù)據(jù)的分布情況和趨勢C.柱狀圖的柱子寬度應(yīng)該根據(jù)數(shù)據(jù)的數(shù)量進(jìn)行調(diào)整D.柱狀圖的柱子顏色可以根據(jù)需要進(jìn)行選擇和設(shè)置12、假設(shè)我們要評估一個分類模型的性能,除了準(zhǔn)確率外,以下哪個指標(biāo)還能反映模型對于不同類別的區(qū)分能力?()A.召回率B.F1值C.均方誤差D.混淆矩陣13、在評估數(shù)據(jù)分析模型的性能時,以下指標(biāo)中,不能用于分類問題的是:()A.準(zhǔn)確率B.均方誤差C.召回率D.F1值14、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯誤數(shù)據(jù)和重復(fù)記錄等問題。為了得到準(zhǔn)確和可靠的分析結(jié)果,需要對數(shù)據(jù)進(jìn)行有效的清洗。以下哪種數(shù)據(jù)清洗方法在處理這種復(fù)雜的數(shù)據(jù)質(zhì)量問題時最為有效?()A.直接刪除包含缺失值或錯誤數(shù)據(jù)的記錄B.采用均值或中位數(shù)填充缺失值C.通過數(shù)據(jù)驗(yàn)證規(guī)則糾正錯誤數(shù)據(jù)D.以上方法結(jié)合使用15、數(shù)據(jù)分析在醫(yī)療領(lǐng)域有著重要的應(yīng)用。假設(shè)一家醫(yī)院想要分析患者的病歷數(shù)據(jù),以提高醫(yī)療服務(wù)質(zhì)量。以下關(guān)于數(shù)據(jù)分析在醫(yī)療中的描述,哪一項(xiàng)是錯誤的?()A.可以預(yù)測疾病的發(fā)生風(fēng)險(xiǎn),提前采取預(yù)防措施B.分析治療效果,優(yōu)化治療方案C.醫(yī)療數(shù)據(jù)的隱私保護(hù)不重要,只要能得到有價值的分析結(jié)果就行D.幫助醫(yī)院進(jìn)行資源規(guī)劃和管理,提高運(yùn)營效率二、簡答題(本大題共3個小題,共15分)1、(本題5分)在處理交通數(shù)據(jù)時,常用的數(shù)據(jù)分析方法和技術(shù)有哪些?解釋擁堵預(yù)測、路徑規(guī)劃等概念,并舉例說明應(yīng)用。2、(本題5分)簡述數(shù)據(jù)分析師如何應(yīng)對數(shù)據(jù)質(zhì)量問題,包括數(shù)據(jù)缺失、錯誤、不一致等,并介紹一些數(shù)據(jù)清洗和修復(fù)的方法。3、(本題5分)在數(shù)據(jù)分析項(xiàng)目中,如何進(jìn)行需求分析和問題定義?請說明需要考慮的關(guān)鍵因素和常用的方法,并舉例說明。三、論述題(本大題共5個小題,共25分)1、(本題5分)在交通擁堵治理中,如何利用數(shù)據(jù)分析來識別擁堵原因、優(yōu)化交通信號和規(guī)劃道路設(shè)施?請?jiān)敿?xì)闡述數(shù)據(jù)分析在交通管理中的作用、數(shù)據(jù)的實(shí)時性要求和政策措施的配合。2、(本題5分)房地產(chǎn)市場的數(shù)據(jù)分析對于投資決策和市場預(yù)測至關(guān)重要。以某房地產(chǎn)開發(fā)商為例,論述如何利用數(shù)據(jù)分析來評估項(xiàng)目可行性、預(yù)測房價走勢、分析市場供需關(guān)系,以及如何處理房地產(chǎn)數(shù)據(jù)的地域特殊性和宏觀經(jīng)濟(jì)因素的影響。3、(本題5分)制造業(yè)企業(yè)在生產(chǎn)過程中產(chǎn)生了大量的工藝、質(zhì)量和設(shè)備運(yùn)行數(shù)據(jù)。以某汽車制造企業(yè)為例,論述如何通過數(shù)據(jù)分析來實(shí)現(xiàn)生產(chǎn)過程的優(yōu)化,如質(zhì)量控制、生產(chǎn)排程、設(shè)備維護(hù)預(yù)測,以及如何利用數(shù)據(jù)驅(qū)動的方法持續(xù)改進(jìn)生產(chǎn)效率和產(chǎn)品質(zhì)量。4、(本題5分)在金融科技領(lǐng)域,如何運(yùn)用數(shù)據(jù)分析來防范欺詐交易?請?jiān)敿?xì)闡述欺詐交易的特征提取、模型構(gòu)建以及實(shí)時監(jiān)測方法,并討論模型的準(zhǔn)確性和適應(yīng)性問題。5、(本題5分)在交通規(guī)劃和管理中,數(shù)據(jù)分析能夠緩解擁堵、提高運(yùn)輸效率和安全性。請全面探討如何通過數(shù)據(jù)分析來優(yōu)化交通流量、規(guī)劃公共交通線路和預(yù)測交通事故,舉例說明智能交通系統(tǒng)中數(shù)據(jù)分析的應(yīng)用和面臨的技術(shù)挑戰(zhàn),如大數(shù)據(jù)處理和實(shí)時決策支持。四、案例分析題(本大題共3個小題,共30分)1、(本題10分)某網(wǎng)約車平臺收集了司機(jī)和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論