版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省廣南縣第三中學(xué)2026屆數(shù)學(xué)高二上期末統(tǒng)考試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的漸近線方程為,則實數(shù)a的值為()A B.C.2 D.2.的展開式中的系數(shù)是()A.1792 B.C.448 D.3.已知橢圓與雙曲線有共同的焦點,則()A.14 B.9C.4 D.24.函數(shù),則的值為()A. B.C. D.5.已知函數(shù),若對任意,都有成立,則a的取值范圍為()A. B.C. D.6.命題“,”的否定是()A., B.,C., D.,7.已知是空間的一個基底,,,,若四點共面.則實數(shù)的值為()A. B.C. D.8.已知過拋物線焦點的直線交拋物線于,兩點,則的最小值為()A. B.2C. D.39.在空間直角坐標(biāo)系中,已知點M是點在坐標(biāo)平面內(nèi)的射影,則的坐標(biāo)是()A. B.C. D.10.若數(shù)列滿足,則數(shù)列的通項公式為()A. B.C. D.11.兩圓與的公切線有()A.1條 B.2條C.3條 D.4條12.橢圓的焦點坐標(biāo)為()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.圓關(guān)于直線的對稱圓的標(biāo)準(zhǔn)方程為_______14.過圓內(nèi)的點作一條直線,使它被該圓截得的線段最短,則直線的方程是______15.已知函數(shù)集合,若A中有且僅有4個元素,則滿足條件的整數(shù)a的個數(shù)為______16.已知圓的圓心與點關(guān)于直線對稱,直線與圓相交于、兩點,且,則圓的方程為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面為正方形,且,點在棱上,且直線與平面所成角的正弦值為(1)求點的位置;(2)求點到平面的距離18.(12分)已知函數(shù).(1)求曲線在點處的切線的方程.(2)若直線為曲線切線,且經(jīng)過坐標(biāo)原點,求直線的方程及切點坐標(biāo).19.(12分)已知分別是橢圓的左、右焦點,點是橢圓上的一點,且的面積為1.(1)求橢圓的短軸長;(2)過原點的直線與橢圓交于兩點,點是橢圓上的一點,若為等邊三角形,求的取值范圍.20.(12分)已知圓,直線的斜率為2,且過點(1)判斷與的位置關(guān)系;(2)若圓,求圓與圓的公共弦長21.(12分)在數(shù)列中,,,數(shù)列滿足(1)求證:數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)數(shù)列前項和為,且滿足,求的表達(dá)式;(3)令,對于大于的正整數(shù)、(其中),若、、三個數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組.22.(10分)如圖,在直三棱柱中,,,D為的中點(1)求證:平面;(2)求平面與平面的夾角的余弦值;(3)若E為的中點,求與所成的角
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由雙曲線的漸近線方程結(jié)合已知可得.【詳解】雙曲線方程為所以漸近線為,故,解得:.故選:D2、D【解析】根據(jù)二項式展開式的通項公式計算出正確答案.【詳解】的展開式中,含的項為.所以的系數(shù)是.故選:D3、C【解析】根據(jù)給定條件結(jié)合橢圓、雙曲線方程的特點直接列式計算作答.【詳解】設(shè)橢圓半焦距為c,則,而橢圓與雙曲線有共同的焦點,則在雙曲線中,,即有,解得,所以.故選:C4、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B5、C【解析】求出函數(shù)的導(dǎo)數(shù),再對給定不等式等價變形,分離參數(shù)借助均值不等式計算作答.【詳解】對函數(shù)求導(dǎo)得:,,,則,,而,當(dāng)且僅當(dāng),即時“=”,于是得,解得,所以a的取值范圍為.故選:C【點睛】關(guān)鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問題的關(guān)鍵.6、D【解析】根據(jù)含一個量詞的命題的否定方法:修改量詞,否定結(jié)論,直接得到結(jié)果.【詳解】命題“,”的否定是“,”.故選:D7、A【解析】由共面定理列式得,再根據(jù)對應(yīng)系數(shù)相等計算.【詳解】因為四點共面,設(shè)存在有序數(shù)對使得,則,即,所以得.故選:A8、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達(dá)定理,求得,利用拋物線定義,將目標(biāo)式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因為拋物線的焦點的坐標(biāo)為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標(biāo)為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當(dāng)且僅當(dāng),即時取得最小值.故選:D.【點睛】本題考察拋物線中的最值問題,涉及到韋達(dá)定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標(biāo)式,是解決問題的關(guān)鍵.9、C【解析】點在平面內(nèi)的射影是坐標(biāo)不變,坐標(biāo)為0的點.【詳解】點在坐標(biāo)平面內(nèi)的射影為,故點M的坐標(biāo)是故選:C10、D【解析】由,分兩步,當(dāng)求出,當(dāng)時得到,兩式作差即可求出數(shù)列的通項公式;【詳解】解:因為①,當(dāng)時,,當(dāng)時②,①②得,所以,當(dāng)時也成立,所以;故選:D11、D【解析】求得圓心坐標(biāo)分別為,半徑分別為,根據(jù)圓圓的位置關(guān)系的判定方法,得出兩圓的位置關(guān)系,即可求解.【詳解】由題意,圓與圓,可得圓心坐標(biāo)分別為,半徑分別為,則,所以,可得圓外離,所以兩圓共有4條切線.故選:D.12、A【解析】由題方程化為橢圓的標(biāo)準(zhǔn)方程求出c,則橢圓的焦點坐標(biāo)可求【詳解】由題得方程可化為,所以所以焦點為故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先將已知圓的方程化為標(biāo)準(zhǔn)形式,求得圓心坐標(biāo)(2,2)和半徑2,然后可根據(jù)直線的位置直接看出(2,2)點的對稱點,進(jìn)而寫出方程.【詳解】圓的標(biāo)準(zhǔn)方程為,圓心(2,2),半徑為2,圓心(2,2)關(guān)于直線的對稱點為原點,所以所求對稱圓標(biāo)準(zhǔn)方程為,故答案為:14、【解析】由已知得圓的圓心為,所以當(dāng)直線時,被該圓截得的線段最短,可求得直線的方程.【詳解】解:由得,所以圓的圓心為,所以當(dāng)直線時,被該圓截得的線段最短,所以,解得,所以直線l的方程為,即,故答案為:.15、32【解析】作出的圖像,由時,不等式成立,所以,判斷出符合條件的非零整數(shù)根只有三個,即等價于時,;時,;利用數(shù)形結(jié)合,進(jìn)行求解.【詳解】作出的圖像如圖所示:因為時,不等式成立,所以,符合條件的非零整數(shù)根只有三個.由可得:時,;時,;所以在y軸左側(cè),的圖像都在的下方;在y軸右側(cè),的圖像都在的上方;而,,,,.平移直線,由圖像可知:當(dāng)時,集合A中除了0只含有1,2,3,符合題意,此時整數(shù)a可以?。?23,-22,-21……-9.一共15個;當(dāng)時,集合A中除了0含有1,-1,-2,符合題意.當(dāng)時,集合A中除了0只含有-1,-2,-3,符合題意,此時整數(shù)a可以?。?,6,7……20一共16個.所以整數(shù)a的值一共有15+1+16=32(個).故答案為:32【點睛】分離參數(shù)法求零點個數(shù)的問題是轉(zhuǎn)化為,分別做出和的圖像,觀察交點的個數(shù)即為零點的個數(shù).用數(shù)形結(jié)合法解決零點問題常有以下幾種類型:(1)零點個數(shù):幾個零點;(2)幾個零點的和;(3)幾個零點的積.16、【解析】利用對稱條件求出圓心C的坐標(biāo),借助直線被圓所截弦長求出圓半徑即可寫出圓的方程.【詳解】設(shè)圓的圓心,依題意,,解得,即圓心,點C到直線的距離,因圓截直線所得弦AB長為6,于是得圓C的半徑所以圓的方程為:.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)為棱中點(2)【解析】(1)以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),其中,利用空間向量法可得出關(guān)于的方程,結(jié)合求出的值,即可得出點的位置;(2)利用空間向量法可求得點到平面的距離【小問1詳解】解:因為平面,底面為正方形,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、、,設(shè),其中,則,設(shè)平面的法向量為,,,由,取,可得,由題意可得,整理可得,因為,解得,因此,點為棱的中點.【小問2詳解】解:由(1)知為棱中點,即,則,又,設(shè)平面的法向量為,由,取,可得,因為,所以,點到平面的距離為.18、(1);(2)直線的方程為,切點坐標(biāo)為.【解析】(1)先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,最后根據(jù)點斜式得結(jié)果,(2)設(shè)切點,根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,根據(jù)點斜式得切線方程,再根據(jù)切線過坐標(biāo)原點解得結(jié)果.【詳解】(1).所以在點處的切線的斜率,∴切線的方程為;(2)設(shè)切點為,則直線的斜率為,所以直線的方程為:,所以又直線過點,∴,整理,得,∴,∴,的斜率,∴直線的方程為,切點坐標(biāo)為.【點睛】本題考查導(dǎo)數(shù)幾何意義以及利用導(dǎo)數(shù)求切線方程,考查基本分析求解能力,屬基礎(chǔ)題.19、(1)2(2)【解析】(1)根據(jù)題意表示出的面積,即可求得結(jié)果;(2)分類討論直線斜率情況,然后根據(jù)是等邊三角形,得到,聯(lián)立直線和橢圓方程,用點的坐標(biāo)表示上述關(guān)系式,化簡即可得答案.【小問1詳解】因為,所以,又因為,所以,,所以,則橢圓的短軸長為2.【小問2詳解】若為等邊三角形,應(yīng)有,即.當(dāng)直線的斜率不存在時,直線的方程為,且,此時若為等邊三角形,則點應(yīng)為長軸頂點,且,即.當(dāng)直線的斜率為0時,直線的方程為,且,此時若為等邊二角形,則點應(yīng)為短軸頂點,此時,不為等邊三角形.當(dāng)直線的斜率存在且不為0時,設(shè)其方程為,則直線的方程為.由得,同理.因為,所以,解得.因為,所以,則,即.綜上,的取值范圍是.20、(1)與相切;(2)【解析】(1)求出圓C的圓心坐標(biāo),半徑和直線l的方程,根據(jù)圓心到直線的距離即可判斷直線與圓的位置關(guān)系;(2)圓與圓的方程相減,可求出公共弦所在的直線方程,然后根據(jù)圓M的圓心到公共弦所在直線的距離及圓M的半徑即可求出公共弦長.【小問1詳解】由圓,可得,所以圓心為,半徑,直線的方程為,即因為圓心到的距離為,所以與相切【小問2詳解】聯(lián)立方程可得,作差可得,即,即公共弦所在直線的方程為易知圓的半徑,圓心到直線的距離為,則公共弦長21、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定等比數(shù)列的首項和公比,可求得數(shù)列的通項公式;(2)求得,然后分、兩種情況討論,結(jié)合裂項相消法可得出的表達(dá)式;(3)求得,分、、三種情況討論,利用奇數(shù)與偶數(shù)的性質(zhì)以及整數(shù)的性質(zhì)可求得、的值,綜合可得出結(jié)論.【小問1詳解】解:由可得,,則,,以此類推可知,對任意的,,則,故數(shù)列為等比數(shù)列,且該數(shù)列的首項為,公比為,故,可得.【小問2詳解】解:由(1)知,所以,所以,當(dāng)n=1時,,當(dāng)時,.因為滿足,所以.【小問3詳解】解:,、、這三項經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,①若,則,所以,,又,所以,,則;②若,則,則,左邊為偶數(shù),右邊為奇數(shù),所以,②不成立;③若,同②可知③也不成立綜合①②③得,22、(1)證明見解析(2)(3)【解析】(1)連接,交于O,連接OD,根據(jù)中位線的性質(zhì),可證,根據(jù)線面平行的判定定理,即可得證;(2)如圖建系,求得各點坐標(biāo),進(jìn)而可求得平面與平面法向量,根據(jù)二面角的向量求法,即可得答案;(3)求得坐標(biāo),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中醫(yī)類人文考試及答案
- 游戲策劃師招聘考試與面試要點分析
- 智能硬件研發(fā)與應(yīng)用專家面試題集
- 2025年文創(chuàng)產(chǎn)品研發(fā)與市場推廣項目可行性研究報告
- 2025年信息技術(shù)在教育中的應(yīng)用可行性研究報告
- 2025年水陸聯(lián)運交通樞紐建設(shè)可行性研究報告
- 2025年新型互聯(lián)網(wǎng)媒體平臺建設(shè)項目可行性研究報告
- 2026年山西省晉中市單招職業(yè)傾向性測試題庫帶答案詳解
- 2026年內(nèi)蒙古機(jī)電職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫帶答案詳解
- 2026年平頂山文化藝術(shù)職業(yè)學(xué)院單招職業(yè)技能測試題庫參考答案詳解
- KTV行業(yè)營銷工作計劃
- 中華人民共和國價格法培訓(xùn)2024
- 220kV變電站電氣設(shè)備常規(guī)交接試驗方案
- 兵團(tuán)精神課件教學(xué)課件
- 湖州師范學(xué)院《電動力學(xué)》2023-2024學(xué)年期末試卷
- 教師資格認(rèn)定申請表
- 中山大學(xué)二外法語考研真題及詳解(2012~2014)【圣才出品】
- 鋪路鋼板租賃合同路基箱鋼板租賃2024年
- 《直播運營實務(wù)》中職全套教學(xué)課件
- 隧道內(nèi)棧橋設(shè)計計算書
- 2022年下半年教師資格證考試《高中生物》題(題目及答案解析)
評論
0/150
提交評論