版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北京市首都師大附中2026屆高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列是首項,公比的等比數(shù)列,且,,成等差數(shù)列,則公比等于()A. B.C. D.2.在中,如果,則角A. B.C. D.3.已知函數(shù)的圖像如圖所示,則函數(shù)與在同一坐標系中的圖像是()A. B.C. D.4.設命題p:?x∈0,1,x>xA.?x∈0,1,x<x3C.?x∈0,1,x≤x35.已知角的終邊過點,則()A. B.C. D.16.命題“”否定是()A. B.C. D.7.為配制一種藥液,進行了二次稀釋,先在容積為40L的桶中盛滿純藥液,第一次將桶中藥液倒出用水補滿,攪拌均勻,第二次倒出后用水補滿,若第二次稀釋后桶中藥液含量不超過容積的60%,則V的最小值為()A.5 B.10C.15 D.208.有一組實驗數(shù)據(jù)如下現(xiàn)準備用下列函數(shù)中的一個近似地表示這些數(shù)據(jù)滿足的規(guī)律,其中最佳的一個是()A. B.C. D.9.若一個三角形采用斜二測畫法作直觀圖,則其直觀圖的面積是原來三角形面積的()倍.A B.C. D.210.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,將角的終邊按順時針方向旋轉(zhuǎn)后經(jīng)過點,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(?∞,0)上單調(diào)遞增.若實數(shù)a滿足f(2|a-1|)>f(-2),則a的取值范圍是12.已知冪函數(shù)的圖象經(jīng)過點,則___________.13.用表示函數(shù)在閉區(qū)間上的最大值.若正數(shù)滿足,則的最大值為__________14.若sinα<0且tanα>0,則α是第___________象限角15.已知冪函數(shù)的圖象過點,且,則a的取值范圍是______16.如圖,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一個點Q滿足PQ⊥QD,則a的值等于________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知集合,(1)當,求;(2)若,求的取值范圍.18.已知函數(shù)是上的奇函數(shù)(1)求;(2)用定義法討論在上的單調(diào)性;(3)若在上恒成立,求的取值范圍19.已知二次函數(shù)滿足.(1)求b,c的值;(2)若函數(shù)是奇函數(shù),當時,,(?。┲苯訉懗龅膯握{(diào)遞減區(qū)間為;(ⅱ)若,求a的取值范圍.20.已知向量,,函數(shù),且的圖像過點.(1)求的值;(2)將的圖像向左平移個單位后得到函數(shù)的圖像,若圖像上各點最高點到點的距離的最小值為1,求的單調(diào)遞增區(qū)間.21.已知函數(shù)f(x)=2sin(ωx+φ)+1()的最小正周期為π,且(1)求ω和φ的值;(2)函數(shù)f(x)的圖象縱坐標不變的情況下向右平移個單位,得到函數(shù)g(x)的圖象,①求函數(shù)g(x)的單調(diào)增區(qū)間;②求函數(shù)g(x)在的最大值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由等差數(shù)列性質(zhì)得,由此利用等比數(shù)列通項公式能求出公比【詳解】數(shù)列是首項,公比的等比數(shù)列,且,,成等差數(shù)列,,,解得(舍或故選A【點睛】本題考查等比數(shù)列的公比的求法,是基礎題,解題時要認真審題,注意等差數(shù)列和等比數(shù)列的性質(zhì)的合理運用2、C【解析】由特殊角的三角函數(shù)值結(jié)合在△ABC中,可求得A的值;【詳解】,又∵A∈(0,π),∴故選C.【點睛】本題考查了特殊角的三角函數(shù)值及三角形中角的范圍,屬于基礎題.3、B【解析】由函數(shù)的圖象可得,函數(shù)的圖象過點,分別代入函數(shù)式,,解得,函數(shù)與都是增函數(shù),只有選項符合題意,故選B.【方法點晴】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意的選項一一排除.4、D【解析】直接根據(jù)全稱命題的否定,即可得到結(jié)論.【詳解】因為命題p:?x∈0,1,x所以?p:?x∈0,1,x故選:D5、B【解析】根據(jù)三角函數(shù)的定義求出,再根據(jù)二倍角余弦公式計算可得;【詳解】解:∵角的終邊過點,所以,∴,故故選:B6、A【解析】根據(jù)全稱命題的否定為特稱命題,即可得到答案【詳解】全稱命題的否定為特稱命題,命題“”的否定是,故選:A7、B【解析】依據(jù)題意列出不等式即可解得V的最小值.【詳解】由,解得則V的最小值為10.故選:B8、C【解析】選代入四個選項的解析式中選取所得的最接近的解析式即可.【詳解】對于選項A:當時,,與相差較多,當時,,與相差較多,故選項A不正確;對于選項B:當時,,與相差較多,當時,,與相差較多,故選項B不正確;對于選項C:當時,,當時,,故選項C正確;對于選項D:當時,,與相差較多,當時,,與相差較多,故選項D不正確;故選:C.9、A【解析】以三角形的一邊為x軸,高所在的直線為y軸,由斜二測畫法看三角形底邊長和高的變化即可【詳解】以三角形的一邊為x軸,高所在的直線為y軸,由斜二測畫法知,三角形的底長度不變,高所在的直線為y′軸,長度減半,故三角形的高變?yōu)樵瓉淼?,故直觀圖中三角形面積是原三角形面積的.故選:A.【點睛】本題考查平面圖形的直觀圖,由斜二測畫法看三角形底邊長和高的變化即可,屬于基礎題.10、A【解析】根據(jù)角的旋轉(zhuǎn)與三角函數(shù)定義得,利用兩角和的正切公式求得,然后待求式由二倍公式,“1”的代換,變成二次齊次式,轉(zhuǎn)化為的式子,再計算可得【詳解】解:將角的終邊按順時針方向旋轉(zhuǎn)后所得的角為,因為旋轉(zhuǎn)后的終邊過點,所以,所以.所以.故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、(【解析】由題意f(x)在(0,+∞)上單調(diào)遞減,又f(x)是偶函數(shù),則不等式f(2a-1)>f(-2)可化為f(212、##【解析】根據(jù)題意得到,求出的值,進而代入數(shù)據(jù)即可求出結(jié)果.【詳解】由題意可知,即,所以,即,所以,因此,故答案為:.13、【解析】對分類討論,利用正弦函數(shù)的圖象求出和,代入,解出的范圍,即可得解.【詳解】當,即時,,,因為,所以不成立;當,即時,,,不滿足;當,即時,,,由得,得,得;當,即時,,,由得,得,得,得;當,即時,,,不滿足;當,即時,,,不滿足.綜上所述:.所以得最大值為故答案為:【點睛】關鍵點點睛:對分類討論,利用正弦函數(shù)的圖象求出和是解題關鍵.14、第三象限角【解析】當sinα<0,可知α是第三或第四象限角,又tanα>0,可知α是第一或第三象限角,所以當sinα<0且tanα>0,則α是第三象限角考點:三角函數(shù)值的象限符號.15、【解析】先求得冪函數(shù)的解析式,根據(jù)函數(shù)的奇偶性、單調(diào)性來求得的取值范圍.【詳解】設,則,所以,在上遞增,且為奇函數(shù),所以.故答案為:16、2【解析】證明平面得到,故與以為直徑的圓相切,計算半徑得到答案.詳解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一個點Q滿足PQ⊥QD,即與以為直徑的圓相切,,故間的距離為半徑,即為1,故.故答案為:2三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)首先求出集合,然后根據(jù)集合的交集運算可得答案;(2)分、兩種情況討論求解即可.【小問1詳解】因為,所以因為,所以【小問2詳解】當,即,時,符合題意當時可得或,解得或綜上,的取值范圍為18、(1);(2)是上的增函數(shù);(3).【解析】(1)利用奇函數(shù)的定義直接求解即可;(2)用函數(shù)的單調(diào)性的定義,結(jié)合指數(shù)函數(shù)的單調(diào)性直接求解即可;(3)利用函數(shù)的奇函數(shù)的性質(zhì)、單調(diào)性原問題可以轉(zhuǎn)化為在上恒成立,利用換元法,再轉(zhuǎn)化為一元二次不等式恒成立問題,分類討論,最后求出的取值范圍.【詳解】(1)函數(shù)是上的奇函數(shù)即即解得;(2)由(1)知設,則故,,故即是上的增函數(shù)(3)是上的奇函數(shù),是上的增函數(shù)在上恒成立等價于等價于在上恒成立即在上恒成立“*”令則“*”式等價于對時恒成立“**”①當,即時“**”為對時恒成立②當,即時,“**”對時恒成立須或解得綜上,的取值范圍是【點睛】本題考查了奇函數(shù)的定義,考查了函數(shù)單調(diào)性的定義,考查了指數(shù)函數(shù)的單調(diào)性的應用,考查了不等式恒成立問題,考查了換元法,考查了數(shù)學運算能力.19、(1);;(2)或【解析】(1)代值計算即可,(2)先根據(jù)函數(shù)的奇偶性求出的解析式,(i)根據(jù)函數(shù)的解析式和二次函數(shù)的性質(zhì)即可求出函數(shù)的單調(diào)減區(qū)間,(ii)根據(jù)函數(shù)單調(diào)性性質(zhì)可得或解得即可.試題解析:二次函數(shù)滿足,解得:;.(2)(ⅰ)(ⅱ)由(1)知,則當時,;當時,,則因為是奇函數(shù),所以.若,則或解得或.綜上,a的取值范圍為或.20、(1);(2).【解析】(1)利用兩個向量的數(shù)量積公式,兩角和的正弦公式化簡函數(shù)的解析式,再把點代入,求得的值(2)根據(jù)函數(shù)的圖象變換規(guī)律求得的解析式,再利用正弦函數(shù)的單調(diào)性,求得的單調(diào)遞增區(qū)間【詳解】(1)已知,過點解得:;(2)左移后得到設的圖象上符合題意的最高點為,解得,解得,,,的單調(diào)增區(qū)間為.【點睛】本題主要考查了三角函數(shù)與向量的簡單運算知識點,以及函數(shù)的圖象變換,屬于中檔題.21、(1);(2)①增區(qū)間為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 墊款供貨合同范本
- 合作就業(yè)合同范本
- 改造裝修合同范本
- 斷橋鋁窗合同范本
- 垃圾清洗合同范本
- 合同業(yè)主變更協(xié)議
- 培訓居間合同范本
- 基建借款合同范本
- 墓碑修復合同范本
- 墻面翻修合同范本
- JG/T 254-2015建筑用遮陽軟卷簾
- TCNFPIA1003-2022采暖用人造板及其制品中甲醛釋放限量
- 大健康產(chǎn)業(yè)可行性研究報告
- 腸易激綜合征中西醫(yī)結(jié)合診療專家共識(2025)解讀課件
- 庫存周轉(zhuǎn)率提升計劃
- 護理部競聘副主任
- 《統(tǒng)計學-基于Excel》(第 4 版)課件 賈俊平 第5-9章 概率分布- 時間序列分析和預測
- 中國計量大學《文科數(shù)學》2021-2022學年第一學期期末試卷
- 中國普通食物營養(yǎng)成分表(修正版)
- 20道長鑫存儲設備工程師崗位常見面試問題含HR常問問題考察點及參考回答
- 抖音ip孵化合同范本
評論
0/150
提交評論