2026屆北京市第五十六中學(xué)數(shù)學(xué)高二上期末檢測模擬試題含解析_第1頁
2026屆北京市第五十六中學(xué)數(shù)學(xué)高二上期末檢測模擬試題含解析_第2頁
2026屆北京市第五十六中學(xué)數(shù)學(xué)高二上期末檢測模擬試題含解析_第3頁
2026屆北京市第五十六中學(xué)數(shù)學(xué)高二上期末檢測模擬試題含解析_第4頁
2026屆北京市第五十六中學(xué)數(shù)學(xué)高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆北京市第五十六中學(xué)數(shù)學(xué)高二上期末檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知圓,為圓外的任意一點(diǎn),過點(diǎn)引圓的兩條切線、,使得,其中、為切點(diǎn).在點(diǎn)運(yùn)動的過程中,線段所掃過圖形的面積為()A. B.C. D.2.已知矩形,為平面外一點(diǎn),且平面,,分別為,上的點(diǎn),且,,,則()A. B.C.1 D.3.下列命題中,正確的是()A.若a>b,c>d,則ac>bd B.若ac>bc,則a<bC.若a>b,c>d,則a﹣c>b﹣d D.若,則a<b4.直線分別交坐標(biāo)軸于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),三角形OAB的內(nèi)切圓上有動點(diǎn)P,則的最小值為()A.16 B.18C.20 D.225.在四棱錐中,分別為的中點(diǎn),則()A. B.C. D.6.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S7=28,則a4=()A.4 B.7C.8 D.147.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》記有行程減等問題:三百七十八里關(guān),初行健步不為難次日腳痛減一半,六朝才得到其關(guān).要見每朝行里數(shù),請公仔細(xì)算相還.意為:某人步行到378里的要塞去,第一天走路強(qiáng)壯有力,但把腳走痛了,次日因腳痛減少了一半,他所走的路程比第一天減少了一半,以后幾天走的路程都比前一天減少一半,走了六天才到達(dá)目的地.請仔細(xì)計(jì)算他每天各走多少路程?在這個(gè)問題中,第四天所走的路程為()A.96 B.48C.24 D.128.南宋數(shù)學(xué)家楊輝在《詳解九章算法》中討論過高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.例如“百層球堆垛”:第一層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,第四層有10個(gè)球,第五層有15個(gè)球,…,各層球數(shù)之差:,,,,…即2,3,4,5,…是等差數(shù)列.現(xiàn)有一個(gè)高階等差數(shù)列,其前6項(xiàng)分別為1,3,6,12,23,41,則該數(shù)列的第8項(xiàng)為()A.51 B.68C.106 D.1579.將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.10.設(shè)等比數(shù)列的前項(xiàng)和為,且,則()A. B.C. D.11.已知在平面直角坐標(biāo)系中,圓的方程為,直線過點(diǎn)且與直線垂直.若直線與圓交于兩點(diǎn),則的面積為A.1 B.C.2 D.12.命題“,”否定是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列的前項(xiàng)和為,則的值為_____14.命題為假命題,則實(shí)數(shù)的取值范圍為_____________.15.已知數(shù)列的前n項(xiàng)和為,則取得最大值時(shí)n的值為__________________16.過橢圓的右焦點(diǎn)作兩條相互垂直的直線m,n,直線m與橢圓交于A,B兩點(diǎn),直線n與橢圓交于C,D兩點(diǎn),若.則下列方程①;②;③;④.其中可以作為直線AB的方程的是______(寫出所有正確答案的序號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,其中為自然對數(shù)的底數(shù).(1)若為的極值點(diǎn),求的單調(diào)區(qū)間和最大值;(2)是否存在實(shí)數(shù),使得的最大值是?若存在,求出的值;若不存在,說明理由.18.(12分)在平面直角坐標(biāo)系中,已知點(diǎn),,點(diǎn)滿足,記點(diǎn)的軌跡為.(1)求的方程;(2)已知,是經(jīng)過圓上一點(diǎn)且與相切的兩條直線,斜率分別為,,直線的斜率為,求證:為定值.19.(12分)已知數(shù)列的前n項(xiàng)和為滿足(1)求證:是等比數(shù)列,并求數(shù)列通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和為.求證:20.(12分)已知橢圓M:的離心率為,左頂點(diǎn)A到左焦點(diǎn)F的距離為1,橢圓M上一點(diǎn)B位于第一象限,點(diǎn)B與點(diǎn)C關(guān)于原點(diǎn)對稱,直線CF與橢圓M的另一交點(diǎn)為D(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)設(shè)直線AD的斜率為,直線AB的斜率為.求證:為定值21.(12分)已知拋物線的焦點(diǎn)為F,點(diǎn)在拋物線上.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)過點(diǎn)的直線交拋物錢C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),記直線OA,OB的斜率分別,,求證:為定值.22.(10分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】連接、、,分析可知四邊形為正方形,求出點(diǎn)的軌跡方程,分析可知線段所掃過圖形為是夾在圓和圓的圓環(huán),利用圓的面積公式可求得結(jié)果.【詳解】連接、、,由圓的幾何性質(zhì)可知,,又因?yàn)榍?,故四邊形為正方形,圓心,半徑為,則,故點(diǎn)的軌跡方程為,所以,線段掃過的圖形是夾在圓和圓的圓環(huán),故在點(diǎn)運(yùn)動的過程中,線段所掃過圖形的面積為.故選:D.2、B【解析】由,,得,然后利用向量的加減法法則把向量用向量表示出來,可求出的值,從而可得答案【詳解】解:因?yàn)?,,所以所?因?yàn)?,所以,所以,故選:B3、D【解析】運(yùn)用不等式性質(zhì),結(jié)合特殊值法,對選項(xiàng)注逐一判斷正誤即可.【詳解】選項(xiàng)A中,若,時(shí),則成立,否則,若,則,顯然錯(cuò)誤,故選項(xiàng)A錯(cuò)誤;選項(xiàng)B中,若,,則能推出,否則,若,則,顯然錯(cuò)誤,故選項(xiàng)B錯(cuò)誤;選項(xiàng)C中,若,則,顯然錯(cuò)誤,故選項(xiàng)C錯(cuò)誤;選項(xiàng)D中,若,顯然,由不等式性質(zhì)知不等式兩邊同乘以一個(gè)正數(shù),不等式不變號,即.故選:D4、B【解析】由題意,求出內(nèi)切圓的半徑和圓心坐標(biāo),設(shè),則,由表示內(nèi)切圓上的動點(diǎn)P到定點(diǎn)的距離的平方,從而即可求解最小值.【詳解】解:因?yàn)橹本€分別交坐標(biāo)軸于A,B兩點(diǎn),所以設(shè),則,因?yàn)?,所以三角形OAB的內(nèi)切圓半徑,內(nèi)切圓圓心為,所以內(nèi)切圓的方程為,設(shè),則,因?yàn)楸硎緝?nèi)切圓上的動點(diǎn)P到定點(diǎn)的距離的平方,且在內(nèi)切圓內(nèi),所以,所以,,即的最小值為18,故選:B.5、A【解析】結(jié)合空間幾何體以及空間向量的線性運(yùn)算即可求出結(jié)果.【詳解】因?yàn)榉謩e為的中點(diǎn),則,,,故選:A.6、A【解析】由等差數(shù)列的性質(zhì)可知,再代入等差數(shù)列的前項(xiàng)和公式求解.【詳解】數(shù)列{an}是等差數(shù)列,,那么,所以.故選:A.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì)和前項(xiàng)和,屬于基礎(chǔ)題型.7、C【解析】每天所走的里程構(gòu)成公比為的等比數(shù)列,設(shè)第一天走了里,利用等比數(shù)列基本量代換,直接求解.【詳解】由題意可知:每天所走的里程構(gòu)成公比為的等比數(shù)列.第一天走了里,第4天走了.故選:C8、C【解析】對高階等差數(shù)列按其定義逐一進(jìn)行構(gòu)造數(shù)列,直到出現(xiàn)一般等差數(shù)列為止,再根據(jù)其遞推關(guān)系進(jìn)行求解.【詳解】現(xiàn)有一個(gè)高階等差數(shù)列,其前6項(xiàng)分別為1,3,6,12,23,41,各項(xiàng)與前一項(xiàng)之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差數(shù)列,所以,故選:C9、B【解析】基本事件總數(shù),再利用列舉法求出點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個(gè)數(shù),由此能求出點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù)之和,基本事件總數(shù),點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個(gè),則點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B10、C【解析】根據(jù)給定條件求出等比數(shù)列公比q的關(guān)系,再利用前n項(xiàng)和公式計(jì)算得解.【詳解】設(shè)等比數(shù)列的的公比為q,由得:,解得,所以.故選:C11、A【解析】∵圓的方程為,即,∴圓的圓心為,半徑為2.∵直線過點(diǎn)且與直線垂直∴直線.∴圓心到直線的距離.∴直線被圓截得的弦長,又∵坐標(biāo)原點(diǎn)到的距離為,∴的面積為.考點(diǎn):1、直線與圓的位置關(guān)系;2、三角形的面積公式.12、D【解析】根據(jù)含有量詞的命題的否定即可得出結(jié)論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列前項(xiàng)和公式的特點(diǎn)列方程,解方程求得的值.【詳解】由于等比數(shù)列前項(xiàng)和,本題中,故.故填:.【點(diǎn)睛】本小題主要考查等比數(shù)列前項(xiàng)和公式的特點(diǎn),考查觀察與思考的能力,屬于基礎(chǔ)題.14、【解析】依據(jù)題意列出關(guān)于實(shí)數(shù)的不等式,即可求得實(shí)數(shù)的取值范圍.【詳解】命題為假命題,則為真命題則判別式,解之得故答案為:15、①.13②.##3.4【解析】由題可得利用函數(shù)的單調(diào)性可得取得最大值時(shí)n的值,然后利用,即求.【詳解】∵,∴當(dāng)時(shí),單調(diào)遞減且,當(dāng)時(shí),單調(diào)遞減且,∴時(shí),取得最大值,∴.故答案為:13;.16、①②【解析】①②結(jié)合橢圓方程得到與橢圓參數(shù)的關(guān)系,即可判斷;③④聯(lián)立直線與橢圓方程,利用弦長公式求,即可判斷.【詳解】由題設(shè),且右焦點(diǎn)為,①時(shí)直線,故,則符合題設(shè);②時(shí),同①知:符合題設(shè);③時(shí)直線,聯(lián)立直線AB與橢圓方程并整理得:,則,同理可得,則,不合題設(shè);④時(shí),同③分析知:,不合題設(shè);故答案為:①②.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;最大值為;(2)存在,.【解析】(1)利用為的極值點(diǎn)求得,進(jìn)而可得函數(shù)的單調(diào)區(qū)間和最大值;(2)對導(dǎo)函數(shù),分與進(jìn)行討論,得函數(shù)的單調(diào)性進(jìn)而求得最值,再由最大值是求出的值.【詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當(dāng)時(shí),單調(diào)遞增,得的最大值是,解得,舍去;②時(shí),由,即,當(dāng),即時(shí),∴時(shí),;時(shí),;∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,又在上的最大值為,∴,∴;當(dāng),即時(shí),在單調(diào)遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,此時(shí).【點(diǎn)睛】本題主要考查了函數(shù)的導(dǎo)數(shù)在求解函數(shù)的單調(diào)性及求解函數(shù)的最值中的應(yīng)用,還考查了函數(shù)的最值求解與分類討論的應(yīng)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的條件.18、(1);(2)證明見解析.【解析】(1)根據(jù)雙曲線的定義可得答案;(2)設(shè),過點(diǎn)的的切線方程為,聯(lián)立此直線與雙曲線的方程消元,然后由可得,即可得到,然后可證明.【小問1詳解】因?yàn)?,所以點(diǎn)的軌跡是以為焦點(diǎn)的雙曲線的右支,所以,,所以,所以的方程為【小問2詳解】設(shè),則,設(shè)過點(diǎn)的切線方程為,聯(lián)立可得由可得,所以所以19、(1)證明見解析,(2)證明見解析【解析】(1)令可求得的值,令,由可得,兩式作差可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定該數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式;(2)求得,利用錯(cuò)位相減法可求得,結(jié)合數(shù)列的單調(diào)性可證得結(jié)論成立.【小問1詳解】證明:當(dāng)時(shí),,解得,當(dāng)時(shí),由可得,上述兩個(gè)等式作差得,所以,,則,因?yàn)?,則,可得,,,以此類推,可知對任意的,,所以,,因此,數(shù)列是等比數(shù)列,且首項(xiàng)為,公比為,所以,,解得.【小問2詳解】證明:,則,其中,所以,數(shù)列為單調(diào)遞減數(shù)列,則,,,上式下式,得,所以,,因此,.20、(1)(2)證明見解析【解析】(1)根據(jù)橢圓離心率公式,結(jié)合橢圓的性質(zhì)進(jìn)行求解即可;(2)設(shè)出直線CF的方程與橢圓方程聯(lián)立,根據(jù)斜率公式,結(jié)合一元二次方程根與系數(shù)關(guān)系進(jìn)行求解即可.【小問1詳解】(1),,∴,,,∴;【小問2詳解】設(shè),,則,CF:聯(lián)立∴,∴【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用一元二次方程根與系數(shù)的關(guān)系是解題的關(guān)鍵.21、(1)(2)證明見解析【解析】(1)將點(diǎn)代入拋物線方程即可求解;(2)當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為,,將直線方程與拋物線方程聯(lián)立利用韋達(dá)定理即可求出的值;當(dāng)直線AB的斜率不存在時(shí),由過點(diǎn)即可求出點(diǎn)和點(diǎn)的坐標(biāo),即可求出的值.【小問1詳解】將點(diǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論