版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
內(nèi)蒙古喀喇沁旗錦山蒙古族中學2026屆高一數(shù)學第一學期期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,那么()A.5 B.C.8 D.2.設,是兩個不同的平面,,是兩條不同的直線,且,A.若,則 B.若,則C.若,則 D.若,則3.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞減的是A. B.C. D.4.若是鈍角,則是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角5.函數(shù)的定義域是()A. B.C D.6.已知函數(shù)在區(qū)間是減函數(shù),則實數(shù)a的取值范圍是A. B.C. D.7.如圖,在正三棱柱中,,若二面角的大小為,則點C到平面的距離為()A.1 B.C. D.8.已知角終邊上一點,則A. B.C. D.9.若直線與曲線有兩個不同的交點,則實數(shù)的取值范圍為A. B.C. D.10.若,其中,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,均為正數(shù),且,則的最大值為____,的最小值為____.12.若不等式對一切恒成立,則a的取值范圍是______________.13.函數(shù)定義域是____________14.點關于直線的對稱點的坐標為______.15.函數(shù)的單調(diào)增區(qū)間為________16.給出下列命題:①函數(shù)是偶函數(shù);②方程是函數(shù)的圖象的一條對稱軸方程;③在銳角中,;④函數(shù)的最小正周期為;⑤函數(shù)的對稱中心是,,其中正確命題的序號是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)利用函數(shù)單調(diào)性的定義證明是單調(diào)遞增函數(shù);(2)若對任意,恒成立,求實數(shù)取值范圍18.已知函數(shù).(1)解關于不等式;(2)若對于任意,恒成立,求的取值范圍.19.已知函數(shù).(1)判斷函數(shù)在上的單調(diào)性,并用定義證明;(2)記函數(shù),證明:函數(shù)在上有唯一零點.20.如圖,在四棱錐中,側(cè)面底面,側(cè)棱,底面為直角梯形,其中為中點.(1)求證:平面;(2)求異面直線與所成角的余弦值;(3)線段上是否存在,使得它到平面的距離為?若存在,求出的值.21.已知角的終邊有一點.(1)求的值;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)平面向量模的坐標運算公式,即可求出結(jié)果.【詳解】因為向量,,所以.故選:B.2、A【解析】由面面垂直的判定定理:如果一個平面經(jīng)過另一平面的一條垂線,則兩面垂直,可得,可得考點:空間線面平行垂直的判定與性質(zhì)3、C【解析】因為函數(shù)是奇函數(shù),所以選項A不正確;因為函為函數(shù)既不是奇函數(shù),也不是偶函數(shù),所以選項B不正確;函數(shù)圖象拋物線開口向下,對稱軸是軸,所以此函數(shù)是偶函數(shù),且在區(qū)間上單調(diào)遞減,所以,選項C正確;函數(shù)雖然是偶函數(shù),但是此函數(shù)在區(qū)間上是增函數(shù),所以選項D不正確;故選C考點:1、函數(shù)的單調(diào)性與奇偶性;2、指數(shù)函數(shù)與對數(shù)函數(shù);3函數(shù)的圖象4、D【解析】由求出,結(jié)合不等式性質(zhì)即可求解.【詳解】,,,在第四象限.故選:D5、B【解析】解不等式組即可得定義域.【詳解】由得:所以函數(shù)的定義域是.故選:B6、C【解析】先由題意得到二次函數(shù)在區(qū)間是增函數(shù),且在上恒成立;列出不等式組求解,即可得出結(jié)果.【詳解】因為函數(shù)在區(qū)間是減函數(shù),所以只需二次函數(shù)在區(qū)間是增函數(shù),且在上恒成立;所以有:,解得;故選C【點睛】本題主要考查由對數(shù)型復合函數(shù)的單調(diào)性求參數(shù)的問題,熟記對數(shù)函數(shù)與二次函數(shù)的性質(zhì)即可,屬于??碱}型.7、C【解析】取的中點,連接和,由二面角的定義得出,可得出、、的值,由此可計算出和的面積,然后利用三棱錐的體積三棱錐的體積相等,計算出點到平面的距離.【詳解】取的中點,連接和,根據(jù)二面角的定義,.由題意得,所以,.設到平面的距離為,易知三棱錐的體積三棱錐的體積相等,即,解得,故點C到平面的距離為.故選C.【點睛】本題考查點到平面距離的計算,常用的方法有等體積法與空間向量法,等體積法本質(zhì)就是轉(zhuǎn)化為三棱錐的高來求解,考查計算能力與推理能力,屬于中等題.8、C【解析】由題意利用任意角的三角函數(shù)的定義,求得的值【詳解】∵角終邊上一點,∴,,,則,故選C【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎題9、D【解析】表示的曲線為圓心在原點,半徑是1的圓在x軸以及x軸上方的部分作出曲線的圖象,在同一坐標系中,再作出斜率是1的直線,由左向右移動,可發(fā)現(xiàn),直線先與圓相切,再與圓有兩個交點,直線與曲線相切時m值為,直線與曲線有兩個交點時的m值為1,則故選D10、D【解析】化簡已知條件,結(jié)合求得的值.【詳解】依題意,,所以,,由于,所以.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.##【解析】利用基本不等式的性質(zhì)即可求出最大值,再通過消元轉(zhuǎn)化為二次函數(shù)求最值即可.【詳解】解:由題意,得4=2a+b≥2,當且僅當2a=b,即a=1,b=2時等號成立,所以0<ab≤2,所以ab的最大值為2,a2+b2=a2+(4-2a)2=5a2-16a+16=5(a-)2+≥,當a=,b=時取等號.故答案為:,.12、【解析】先討論時不恒成立,再根據(jù)二次函數(shù)的圖象開口方向、判別式進行求解.【詳解】當時,則化為(不恒成立,舍),當時,要使對一切恒成立,需,即,即a的取值范圍是.故答案為:.13、【解析】根據(jù)偶次方根式下被開方數(shù)非負,有因此函數(shù)定義域,注意結(jié)果要寫出解集性質(zhì).考點:函數(shù)定義域14、【解析】設點關于直線的對稱點為,由垂直的斜率關系,和線段的中點在直線上列出方程組即可求解.【詳解】設點關于直線的對稱點為,由對稱性知,直線與線段垂直,所以,所以,又線段的中點在直線上,即,所以,由,所以點關于直線的對稱點的坐標為:.故答案為:.15、.【解析】結(jié)合定義域由復合函數(shù)的單調(diào)性可解得結(jié)果.【詳解】由得定義域為,令,則在單調(diào)遞減,又在單調(diào)遞減,所以的單調(diào)遞增區(qū)間是.故答案為:.16、①②③【解析】由誘導公式化簡得函數(shù),判斷①正確;求出函數(shù)的圖象的對稱軸(),當時,,判斷②正確;在銳角中,由化簡得到,判斷③正確;直接求出函數(shù)的最小正周期為,判斷④錯誤;直接求出函數(shù)的對稱中心是,判斷⑤錯誤.【詳解】①因為函數(shù),所以函數(shù)是偶函數(shù),故①正確;②因為函數(shù),所以函數(shù)圖象的對稱軸(),即(),當時,,故②正確;③在銳角中,,即,所以,故③正確;④函數(shù)的最小正周期為,故④錯誤;⑤令,解得,所以函數(shù)的對稱中心是,故⑤錯誤.故答案為:①②③【點睛】本題考查三角函數(shù)的圖象與性質(zhì)、誘導公式與三角恒等變換,是中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)利用單調(diào)性的定義,取值、作差、整理、定號、得結(jié)論,即可得證.(2)令,根據(jù)x的范圍,可得t的范圍,原式等價為,,只需即可,分別討論、和三種情況,根據(jù)二次函數(shù)的性質(zhì),計算求值,分析即可得答案.【小問1詳解】由已知可得的定義域為,任取,且,則,因為,,,所以,即,所以在上是單調(diào)遞增函數(shù)【小問2詳解】,令,則當時,,所以令,,則只需當,即時,在上單調(diào)遞增,所以,解得,與矛盾,舍去;當,即時,在上單調(diào)遞減,在上單調(diào)遞增,所以,解得;當即時,在上單調(diào)遞減,所以,解得,與矛盾,舍去綜上,實數(shù)的取值范圍是18、(1)當時,不等式的解集是當時,不等式的解集是當時不等式的解集是(2)【解析】(1)將不等式,轉(zhuǎn)化成,分別討論當時,當時,當時,不等式的解集.(2)將對任意,恒成立問題,轉(zhuǎn)化為,恒成立,再利用均值不等式求的最小值,從而得到a的取值范圍.【詳解】(1)因為不等式所以即當時,解得當時,解得當時,解得綜上:當時,不等式的解集是當時,不等式的解集是當時不等式的解集是(2)因為對于任意,恒成立所以,恒成立所以,恒成立令因為當且僅當,即時取等號所以【點睛】本題主要考查了含參一元二次不等式的解法以及恒成立問題,還考查了轉(zhuǎn)化化歸的思想及運算求解的能力,屬于中檔題.19、(1)在上單調(diào)遞增,證明見解析;(2)證明見解析.【解析】(1)根據(jù)題意,結(jié)合作差法,即可求證;(2)根據(jù)題意,結(jié)合單調(diào)性與零點存在性定理,即可求證.【小問1詳解】函數(shù)在上單調(diào)遞增.證明:任取,則,因為,所以,所以,即,因此,故函數(shù)在上單調(diào)遞增.【小問2詳解】證明:因為,,所以由函數(shù)零點存在定理可知,函數(shù)在上有零點,因為和都在上單調(diào)遞增,所以函數(shù)在上單調(diào)遞增,故函數(shù)在上有唯一零點.20、(1)見解析;(2);(3)存在,..【解析】(1)根據(jù)線面垂直的判定定理可知,只需證直線PO垂直平面ABCD中的兩條相交直線垂直即可;(2)先通過平移將兩條異面直線平移到同一個起點B,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp-DQC=VQ-PCD,即可得出結(jié)論試題解析:(1)證明:在中為中點,所以.又側(cè)面底面,平面平面平面,所以平面.(2)解:連接,在直角梯形中,,有且,所以四邊形是平行四邊形,所以.由(1)知為銳角,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程量合同范本
- 建筑出租合同范本
- 征拆協(xié)助協(xié)議書
- 蕪湖光伏協(xié)議書
- 2025廣東工業(yè)大學物理與光電工程學院高層次人才招聘備考核心試題附答案解析
- 學生自殺協(xié)議書
- 莊稼管護協(xié)議書
- 贈與小孩協(xié)議書
- 裝修補充協(xié)議書
- 轉(zhuǎn)店公司合同范本
- 10Kv電力變壓器試驗報告
- 市政工程試驗檢測培訓教程
- 寧夏調(diào)味料項目可行性研究報告
- GRR計算表格模板
- 長沙市長郡雙語實驗學校人教版七年級上冊期中生物期中試卷及答案
- 馬克思主義經(jīng)典著作選讀智慧樹知到課后章節(jié)答案2023年下四川大學
- GB/T 19867.1-2005電弧焊焊接工藝規(guī)程
- GB/T 16102-1995車間空氣中硝基苯的鹽酸萘乙二胺分光光度測定方法
- GB/T 15171-1994軟包裝件密封性能試驗方法
- 醫(yī)院轉(zhuǎn)院證明樣本圖片(范文四篇)
- 外科護理學期末試卷3套18p
評論
0/150
提交評論