版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆吉林省長春市一五一中數(shù)學(xué)高二上期末監(jiān)測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列滿足,則q=()A.1 B.-1C.3 D.-32.已知實(shí)數(shù),滿足則的最大值為()A.-1 B.0C.1 D.23.已知隨機(jī)變量服從正態(tài)分布,,則()A. B.C. D.4.在等比數(shù)列中,若,,則()A. B.C. D.5.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知拋物線的方程為,則此拋物線的準(zhǔn)線方程為()A. B.C. D.7.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.818.點(diǎn)到直線的距離是()A. B.C. D.9.算盤是中國古代的一項(xiàng)重要發(fā)明.現(xiàn)有一種算盤(如圖1),共兩檔,自右向左分別表示個位和十位,檔中橫以梁,梁上一珠撥下,記作數(shù)字5,梁下五珠,上撥一珠記作數(shù)字1(如圖2中算盤表示整數(shù)51).如果撥動圖1算盤中的兩枚算珠,可以表示不同整數(shù)的個數(shù)為()A.8 B.10C.15 D.1610.直線的傾斜角是A. B.C. D.11.經(jīng)過點(diǎn)的直線的傾斜角為,則A. B.C. D.12.已知是邊長為6的等邊所在平面外一點(diǎn),,當(dāng)三棱錐的體積最大時,三棱錐外接球的表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與垂直,則m的值為______14.設(shè),則曲線在點(diǎn)處的切線的傾斜角是_______15.已知數(shù)列滿足,,則使得成立的n的最小值為__________.16.已知隨機(jī)變量,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右頂點(diǎn)坐標(biāo)分別是,,短軸長等于焦距.(1)求橢圓的方程;(2)若直線與橢圓相交于兩點(diǎn),線段的中點(diǎn)為,求.18.(12分)已知函數(shù),.(1)當(dāng)時,求不等式的解集;(2)若在上恒成立,求取值范圍.19.(12分)已知兩點(diǎn)(1)求以線段為直徑的圓C的方程;(2)在(1)中,求過M點(diǎn)的圓C的切線方程20.(12分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.點(diǎn)E在PC上.(1)求證:平面BDE⊥平面PAC;(2)若E為PC的中點(diǎn),求直線PC與平面AED所成的角的正弦值.21.(12分)已知拋物線:上的點(diǎn)到焦點(diǎn)的距離為(1)求拋物線的方程;(2)設(shè)縱截距為的直線與拋物線交于,兩個不同的點(diǎn),若,求直線的方程22.(10分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)已知條件,利用等比數(shù)列的基本量列出方程,即可求得結(jié)果.【詳解】因?yàn)?,故可得;解?故選:C.2、D【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù),即可得到結(jié)果【詳解】由約束條件畫出可行域如圖,化目標(biāo)函數(shù)為,由圖可知當(dāng)直線過點(diǎn)時,直線在軸上的截距最小,取得最大值2.故選:D3、B【解析】直接利用正態(tài)分布的應(yīng)用和密度曲線的對稱性的應(yīng)用求出結(jié)果【詳解】根據(jù)隨機(jī)變量服從正態(tài)分布,所以密度曲線關(guān)于直線對稱,由于,所以,所以,則,所以故選:B.【點(diǎn)睛】本題考查的知識要點(diǎn):正態(tài)分布的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題4、D【解析】由等比數(shù)列的性質(zhì)得,化簡,代入數(shù)值求解.【詳解】因?yàn)閿?shù)列是等比數(shù)列,所以,由題意,所以.故選:D5、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”原則進(jìn)行判斷即可.【詳解】因?yàn)榉匠虨殡p曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.6、A【解析】由拋物線的方程直接寫出其準(zhǔn)線方程即可.【詳解】由拋物線的方程為,則其準(zhǔn)線方程為:故選:A7、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點(diǎn)睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.8、B【解析】直接使用點(diǎn)到直線距離公式代入即可.【詳解】由點(diǎn)到直線距離公式得故選:B9、A【解析】根據(jù)給定條件分類探求出撥動兩枚算珠的結(jié)果計算得解.【詳解】撥動圖1算盤中的兩枚算珠,有兩類辦法,由于撥動一枚算珠有梁上、梁下之分,則只在一個檔撥動兩枚算珠共有4種方法,在每一個檔各撥動一枚算珠共有4種方法,由分類加法計數(shù)原理得共有8種方法,所以表示不同整數(shù)的個數(shù)為8.故選:A10、D【解析】由方程得到斜率,然后可得其傾斜角.【詳解】因?yàn)橹本€的斜率為所以其傾斜角為故選:D11、A【解析】由題意,得,解得;故選A考點(diǎn):直線的傾斜角與斜率12、C【解析】由題意分析可得,當(dāng)時三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計算方法來計算,即可計算出球半徑,從而完成求解.【詳解】由題意可知,當(dāng)三棱錐的體積最大時是時,為正三角形,如圖所示,將三棱錐補(bǔ)成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點(diǎn)上,設(shè)外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、0或-9##-9或0【解析】根據(jù)給定條件利用兩直線互相垂直的性質(zhì)列式計算即得.【詳解】因直線與垂直,則有,解得或,所以m的值為0或-9.故答案為:0或-914、【解析】利用導(dǎo)數(shù)的定義,化簡整理,可得,根據(jù)導(dǎo)數(shù)的幾何意義,即可求得答案.【詳解】因?yàn)?,所以,則曲線在點(diǎn)處的切線斜率為,即,又所以所求切線的傾斜角為故答案為:15、11【解析】由題設(shè)可得,結(jié)合等比數(shù)列的定義知從第二項(xiàng)開始是公比為2的等比數(shù)列,進(jìn)而寫出的通項(xiàng)公式,即可求使成立的最小值n.【詳解】因?yàn)?,所以,兩式相除得,整理?因?yàn)椋蕪牡诙?xiàng)開始是等比數(shù)列,且公比為2,因?yàn)?,則,所以,則,由得:,故故答案為:11.16、【解析】根據(jù)二項(xiàng)分布的均值與方差的關(guān)系求得,再根據(jù)方差的性質(zhì)求解即可.【詳解】,所以,又因?yàn)?所以故答案為:12【點(diǎn)睛】本題主要考查了二項(xiàng)分布的均值與方差的計算,同時也考查了方差的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由橢圓頂點(diǎn)可知,又短軸長等于焦距可知,求出,即可寫出橢圓方程(2)根據(jù)“點(diǎn)差法”可求直線的斜率,寫出直線方程,聯(lián)立橢圓方程可得,,代入弦長公式即可求解.【詳解】(1)依題意,解得.故橢圓方程為.(2)設(shè)的坐標(biāo)分別為,,直線的斜率顯然存在,設(shè)斜率為,則,兩式相減得,整理得.因?yàn)榫€段的中點(diǎn)為,所以,所以直線的方程為,聯(lián)立,得,則,,故.【點(diǎn)睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),“點(diǎn)差法”,弦長公式,屬于中檔題.18、(1)或;(2).【解析】(1)解不含參數(shù)的一元二次不等式即可求出結(jié)果;(2)二次函數(shù)的恒成立問題需要對二次項(xiàng)系數(shù)是否為0進(jìn)行分類討論,即可求出結(jié)果.【詳解】(1)當(dāng)時,,即,解得或,所以,解集為或.(2)因?yàn)樵谏虾愠闪ⅲ佼?dāng)時,恒成立;②當(dāng)時,,解得,綜上,的取值范圍為.19、(1);(2).【解析】(1)求出圓心和半徑即可得到答案;(2)根據(jù)題意先求出切線的斜率,進(jìn)而通過點(diǎn)斜式求出切線方程.【小問1詳解】由題意,圓心,半徑,則圓C的方程為:.【小問2詳解】由題意,,則切線斜率為-1,所以切線方程為:.20、(1)證明見解析;(2)【解析】(1)根據(jù)題意可判斷出ABCD是正方形,從而可得,再根據(jù),由線面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可證出;(2)由、、兩兩垂直可建立空間直角坐標(biāo)系,利用向量法即可求出直線PC與平面AED所成的角的正弦值.【小問1詳解】因?yàn)镻A⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小問2詳解】由題可知、、兩兩垂直,建系如圖,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,設(shè)平面的一個法向量為,則,,即,取,0,,所以直線與平面所成的角的正弦值為21、(1);(2)【解析】(1)利用拋物線的性質(zhì)即可求解.(2)設(shè)直線方程,與拋物線聯(lián)立,利用韋達(dá)定理,即可求解.【詳解】(1)由題設(shè)知,拋物線的準(zhǔn)線方程為,由點(diǎn)到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年眉山藥科職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試題庫附答案詳解
- 2026年池州職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及參考答案詳解1套
- 2026年甘肅省甘南藏族自治州單招職業(yè)傾向性考試題庫附答案詳解
- 2026年上海健康醫(yī)學(xué)院單招職業(yè)技能考試題庫參考答案詳解
- 2026年湖南水利水電職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試題庫及完整答案詳解1套
- 放療技術(shù)員培訓(xùn)課件
- 2026年順德職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及參考答案詳解
- 2026年襄陽科技職業(yè)學(xué)院單招職業(yè)傾向性考試題庫及完整答案詳解1套
- 2026年廈門軟件職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及參考答案詳解1套
- 2026年上饒幼兒師范高等??茖W(xué)校單招職業(yè)傾向性考試題庫附答案詳解
- 連云港疫情管理辦法
- 專題03 細(xì)胞呼吸和光合作用-2025年高考《生物》真題分類匯編
- 柳州巴迪二安寵物醫(yī)院有限公司項(xiàng)目環(huán)境影響報告表
- 大連東軟信息學(xué)院《Python數(shù)據(jù)采集與處理課程實(shí)驗(yàn)》2024-2025學(xué)年第一學(xué)期期末試卷
- 不認(rèn)定為安全生產(chǎn)事故的依據(jù)
- 單位征信管理辦法
- DBJ04-T362-2025 保模一體板復(fù)合墻體保溫系統(tǒng)應(yīng)用技術(shù)標(biāo)準(zhǔn)
- 《中小學(xué)跨學(xué)科課程開發(fā)規(guī)范》
- 注塑廠生產(chǎn)安全培訓(xùn)課件
- 根尖囊腫護(hù)理課件
- 菜鳥驛站合作協(xié)議合同
評論
0/150
提交評論