版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆浙江省慈溪市六校高二上數(shù)學期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是()A. B.C. D.2.拋物線型太陽灶是利用太陽能輻射的一種裝置.當旋轉(zhuǎn)拋物面的主光軸指向太陽的時候,平行的太陽光線入射到旋轉(zhuǎn)拋物面表面,經(jīng)過反光材料的反射,這些反射光線都從它的焦點處通過,形成太陽光線的高密集區(qū),拋物面的焦點在它的主光軸上.如圖所示的太陽灶中,灶深CD即焦點到灶底(拋物線的頂點)的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m3.已知是等比數(shù)列,,,則()A. B.C. D.4.若向量,,則()A. B.C. D.5.在直三棱柱中,,,則直線與所成角的大小為()A.30° B.60°C.120° D.150°6.將一枚均勻的骰子先后拋擲3次,至少出現(xiàn)兩次點數(shù)為3的概率為()A. B.C. D.7.某中學舉行黨史學習教育知識競賽,甲隊有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時現(xiàn)場從中隨機抽出名選手答題,則至少有名女同學被選中的概率是()A. B.C. D.8.雙曲線的焦點到漸近線的距離為()A. B.2C. D.9.在各項都為正數(shù)的等比數(shù)列中,首項,前3項和為21,則()A.84 B.72C.33 D.18910.已知數(shù)列滿足,則()A. B.C. D.11.若曲線與曲線在公共點處有公共切線,則實數(shù)()A. B.C. D.12.已知數(shù)列滿足,且,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.近年來,我國外賣業(yè)發(fā)展迅猛,外賣小哥穿梭在城市的大街小巷成為一道道亮麗的風景線.他們根據(jù)外賣平臺提供的信息到外賣店取單,某外賣小哥每天來往于r個外賣店(外賣店的編號分別為1,2,…,r,其中),約定:每天他首先從1號外賣店取單,稱為第1次取單,之后,他等可能的前往其余個外賣店中的任何一個店取單,稱為第2次取單,依此類推.假設(shè)從第2次取單開始,他每次都是從上次取單的店之外的個外賣店取單.設(shè)事件表示“第k次取單恰好是從1號店取單()”,是事件發(fā)生的概率,顯然,,則______,與的關(guān)系式為______14.函數(shù),則函數(shù)在處切線的斜率為_______________.15.已知B(,0)是圓A:內(nèi)一點,點C是圓A上任意一點,線段BC的垂直平分線與AC相交于點D.則動點D的軌跡方程為_________________.16.平行六面體中,底面是邊長為1的正方形,,則對角線的長度為___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知:圓是的外接圓,邊所在直線的方程為,中線所在直線的方程為,直線與圓相切于點.(1)求點和點的坐標;(2)求圓的方程.18.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求的取值范圍;(2)若在上存在極值點,證明:.19.(12分)已知函數(shù).(1)求的單調(diào)遞減區(qū)間;(2)在銳角中,,,分別為角,,的對邊,且滿足,求的取值范圍.20.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為3,直線與拋物線交于,兩點,為坐標原點(1)求拋物線的方程;(2)求的面積.21.(12分)在中,內(nèi)角A,B,C對應(yīng)的邊分別為a,b,c,已知.(1)求B;(2)若,,求b的值.22.(10分)已知函數(shù),(1)求的單調(diào)區(qū)間;(2)當時,求證:在上恒成立
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】分析可知,對任意的恒成立,由參變量分離法可得出,求出在時的取值范圍,即可得出實數(shù)的取值范圍.【詳解】因為,則,由題意可知對任意的恒成立,則對任意的恒成立,當時,,.故選:B.2、C【解析】建立如圖所示的平面直角坐標系,設(shè)拋物線的方程為,根據(jù)是拋物線的焦點,求得拋物線的方程,進而求得的長.【詳解】由題意,建立如圖所示的平面直角坐標系,O與C重合,設(shè)拋物線的方程為,由題意可得是拋物線的焦點,即,可得,所以拋物線的方程為,當時,,所以.故選:C.3、D【解析】由,,可求出公比,從而可求出等比數(shù)的通項公式,則可求出,得數(shù)列是一個等比數(shù)列,然后利用等比數(shù)的求和公式可求得答案【詳解】由題得.所以,所以.所以,所以數(shù)列是一個等比數(shù)列.所以=.故選:D4、D【解析】由向量數(shù)量積的坐標運算求得數(shù)量積,模,結(jié)合向量的共線定義判斷【詳解】由已知,,,與不垂直,若,則,,但是,,因此與不共線故選:D5、B【解析】根據(jù)三棱柱的特征補全為正方體,則,為直線與所成角,連接,則為等邊三角形即可得解.【詳解】根據(jù)直三棱柱的特征,補全可得如圖所示的正方體,易知,為直線與所成角,連接,則為等邊三角形,所以,所以直線與所成角的大小為.故選:B6、D【解析】利用次獨立重復(fù)試驗中事件A恰好發(fā)生次的概率計算公式直接求解.【詳解】解:將一枚均勻的篩子先后拋擲3次,每次出現(xiàn)點數(shù)為3的概率都是至少出現(xiàn)兩次點數(shù)為3的概率為:故選:D7、D【解析】現(xiàn)場選名選手,共種情況,設(shè),,,四位同學為男同學則沒有女同學被選中的情況,共有6種,利用對立事件進行求解,即可得到答案;【詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學為男同學則沒有女同學被選中的情況是:,,,,,共種,則至少有一名女同學被選中的概率為.故選:.8、A【解析】根據(jù)點到直線距離公式進行求解即可.【詳解】由雙曲線的標準方程可知:,該雙曲線的焦點坐標為:,雙曲線的漸近線方程為:,所以焦點到漸近線的距離為:,故選:A9、A【解析】分析:設(shè)等比數(shù)列的公比為,根據(jù)前三項的和為列方程,結(jié)合等比數(shù)列中,各項都為正數(shù),解得,從而可以求出的值.詳解:設(shè)等比數(shù)列的公比為,首項為3,前三項的和為,,解之得或,在等比數(shù)列中,各項都為正數(shù),公比為正數(shù),舍去),,故選A.點睛:本題考查以一個特殊的等比數(shù)列為載體,通過求連續(xù)三項和的問題,著重考查了等比數(shù)列的通項,等比數(shù)列的性質(zhì)和前項和等知識點,屬于簡單題.10、D【解析】根據(jù)給定條件求出數(shù)列的通項公式,再利用裂項相消法即可計算作答.【詳解】因,則,所以,所以.故選:D11、A【解析】設(shè)公共點為,根據(jù)導(dǎo)數(shù)的幾何意義可得出關(guān)于、的方程組,即可解得實數(shù)、的值.【詳解】設(shè)公共點為,的導(dǎo)數(shù)為,曲線在處的切線斜率,的導(dǎo)數(shù)為,曲線在處的切線斜率,因為兩曲線在公共點處有公共切線,所以,且,,所以,即解得,所以,解得,故選:A12、A【解析】由已知兩個不等式,利用“兩邊夾”思想求得,然后利用累加法可求得【詳解】∵,∴,∴,又,∴,即,∴故選:A【點睛】本題考查數(shù)列的遞推式,由遞推式的特征,采用累加法求得數(shù)列的項.解題關(guān)鍵是利用“兩邊夾”思想求解二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù)題意,結(jié)合條件概率的計算公式,即可求解.【詳解】根據(jù)題意,事件表示“第3次取單恰好是從1號店取單”,因此;同理故答案為:;.14、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求解即可.【詳解】解:因為,所以,所以,所以函數(shù)在處切線的斜率為故答案為:15、【解析】利用橢圓的定義可得軌跡方程.【詳解】連接,由題意,,則,由橢圓的定義可得動點D的軌跡為橢圓,其焦點坐標為,長半軸長為2,故短半軸長為1,故軌跡方程為:.故答案為:.16、2【解析】利用,兩邊平方后,利用向量數(shù)量積計算公式,計算得.【詳解】對兩邊平方并化簡得,故.【點睛】本小題主要考查空間向量的加法和減法運算,考查空間向量數(shù)量積的表示,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)A(1,7),(2)【解析】(1)與的的交點為點D,與的的交點為點A,聯(lián)立解方程即可得出結(jié)果.(2)設(shè)圓P的圓心P為,由,,計算求解即可得出點坐標,由求得半徑,進而可得出圓的方程.【小問1詳解】由題可得:與的的交點為點D,故由,解得:,故與的的交點為點A,,解得:,故A(1,7)【小問2詳解】設(shè)圓P的圓心P為,由與圓相切于點A,且的斜率為,則即,即,①又圓P為的外接圓,則BC為圓P的弦,又邊BC所在直線的科率為,故根據(jù)垂徑定理,有進而,即②,聯(lián)立①②,解得:,即故,則圓P的方程為:.18、(1)(2)證明見解析【解析】(1)由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,分類討論,再次利用導(dǎo)數(shù)研究函數(shù)的最值即可;(2)由(1)可知,在存在極值點,則且,求得,再兩次求導(dǎo)即可得結(jié)論.【小問1詳解】由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,設(shè),當時,由,得,在,上為增函數(shù),則,在,上恒成立,滿足命題,當時,由,得,在上為減函數(shù),,時,,即,不滿足恒成立,不成立,綜上:的取值范圍為.小問2詳解】證明:由(1)可知,在存在極值點,則且即:要證只需證即證又由(1)可知在上為增函數(shù),且,成立.要證只需證即證:設(shè)則即在上增函數(shù)在為增函數(shù)成立.綜上,成立.19、(1)(2)【解析】(1)根據(jù)降冪公式化簡的解析式,再用整體代入法即可求出函數(shù)的單調(diào)遞減區(qū)間;(2)由正弦定理邊化角,從而可求得,根據(jù)銳角三角形可得從而可求出答案【詳解】解:(1),由得所以的單調(diào)遞減區(qū)間為;(2)由正弦定理得,∵∴,即,,得,或,解得,或(舍),∵為銳角三角形,∴解得∴∴的取值范圍為【點睛】本題主要考查三角函數(shù)的化簡與性質(zhì),考查正弦定理的作用,屬于基礎(chǔ)題20、(1);(2)【解析】(1)由題意可設(shè)拋物線的方程為y2=2px(p>0),運用拋物線的定義,可得23,解得p=2,進而得到拋物線的方程;(2)由題意,直線AB方程為y=x﹣1,與y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根與系數(shù)的關(guān)系和弦長公式,算出|AB|;利用點到直線的距離公式算出點O到直線AB的距離,即可求出△AOB的面積【詳解】(1)拋物線C的頂點在原點,焦點在x軸上,且過一點P(2,m),可設(shè)拋物線的方程為y2=2px(p>0),P(2,m)到焦點的距離為3,即有P到準線的距離為6,即23,解得p=2,即拋物線的標準方程為y2=4x;(2)聯(lián)立方程化簡,得x2﹣6x+1=0設(shè)交點為A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8點O到直線l的距離d,所以△AOB的面積為S|AB|?d82【點睛】本題考查拋物線的方程的求法及拋物線定義的應(yīng)用,考查待定系數(shù)法的運用,考查求焦點弦AB與原點構(gòu)成的△AOB面積,屬于中檔題21、(1);(2).【解析】(1)利用正弦定理,將邊化角轉(zhuǎn)化,即可求得;(2)利用余弦定理,結(jié)合(1)中所求,即可求得.【小問1詳解】在中,由正弦定理得,因為,所以,所以,又因為,所以.【小問2詳解】在中,由余弦定理得,代入數(shù)據(jù)解得,所以22、(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)證明見解析.【解析】(1)求得,根據(jù)其正負,即可判斷函數(shù)單調(diào)性從而求得函數(shù)單調(diào)區(qū)間;(2)根據(jù)題意,轉(zhuǎn)化目標不等式為,分別構(gòu)造函數(shù),,利用導(dǎo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年河南工業(yè)貿(mào)易職業(yè)學院單招職業(yè)適應(yīng)性測試題庫附答案解析
- 2024年河南建筑職業(yè)技術(shù)學院單招職業(yè)傾向性考試題庫附答案解析
- 2023年吉林省松原市單招職業(yè)適應(yīng)性測試模擬測試卷附答案解析
- 2024年長沙環(huán)境保護職業(yè)技術(shù)學院單招職業(yè)技能考試模擬測試卷附答案解析
- 2026年甘肅省酒泉地區(qū)單招職業(yè)傾向性測試題庫附答案解析
- 2024年武漢城市職業(yè)學院單招職業(yè)技能測試模擬測試卷附答案解析
- 雙胞胎公司秋招題庫及答案
- 盛虹集團招聘試題及答案
- 勝達集團招聘題庫及答案
- 2024年江西楓林涉外經(jīng)貿(mào)職業(yè)學院單招職業(yè)適應(yīng)性考試題庫附答案解析
- 商業(yè)項目評估報告
- 廣東省深圳市寶安區(qū)2025-2026學年生物高二第一學期期末檢測模擬試題含解析
- 人工智能+區(qū)域協(xié)調(diào)區(qū)域經(jīng)濟一體化可行性分析
- 多重耐藥感染防控PDCA培訓(xùn)
- (人教版)初中英語九年級 Unit 13單元測試及答案01
- 第八章-波導(dǎo)間耦合
- 新版三體系培訓(xùn)課件
- 2025年數(shù)學建模競賽試題與答案解析
- 海上風電與海洋牧場融合發(fā)展趨勢
- 2025至2030年中國茶葉電商行業(yè)市場深度分析及投資戰(zhàn)略規(guī)劃研究報告
- 2025至2030車身廣告行業(yè)項目調(diào)研及市場前景預(yù)測評估報告
評論
0/150
提交評論