2026屆廣東省江門市示范初中高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁
2026屆廣東省江門市示范初中高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁
2026屆廣東省江門市示范初中高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁
2026屆廣東省江門市示范初中高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁
2026屆廣東省江門市示范初中高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆廣東省江門市示范初中高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線,圓.點為直線上的動點,過點作圓的切線,切點分別為.當(dāng)四邊形面積最小時,直線方程是()A. B.C. D.2.已知函數(shù),則A.是奇函數(shù),且在R上是增函數(shù) B.是偶函數(shù),且在R上是增函數(shù)C.是奇函數(shù),且在R上是減函數(shù) D.是偶函數(shù),且在R上是減函數(shù)3.直線經(jīng)過第一、二、四象限,則a、b、c應(yīng)滿足()A. B.C. D.4.函數(shù)圖象的一條對稱軸是A. B.x=πC. D.x=2π5.定義在上的偶函數(shù)滿足當(dāng)時,,則A. B.C. D.6.在中,為邊的中點,則()A. B.C. D.7.在中,,.若點滿足,則()A. B.C. D.8.從裝有兩個紅球和兩個白球的口袋內(nèi)任取兩個球,那么互斥而不對立的事件是()A.至少有一個白球與都是紅球 B.恰好有一個白球與都是紅球C.至少有一個白球與都是白球 D.至少有一個白球與至少一個紅球9.某公司位員工的月工資(單位:元)為,,…,,其均值和方差分別為和,若從下月起每位員工的月工資增加元,則這位員工下月工資的均值和方差分別為A., B.,C, D.,10.已知弧長為cm的弧所對的圓心角為,則這條弧所在的扇形面積為()cm2A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則______12.已知半徑為的扇形的面積為,周長為,則________13.在中,已知是上的點,且,設(shè),,則=________.(用,表示)14.若f(x)為偶函數(shù),且當(dāng)x≤0時,,則不等式>的解集______.15.函數(shù)的定義域是______________16.定義在上的函數(shù)則的值為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)向量,且與不共線(1)求證:;(2)若向量與的模相等,求.18.在平面直角坐標(biāo)系中,角()和角()的頂點均與坐標(biāo)原點重合,始邊均為軸的非負(fù)半軸,終邊分別與單位圓交于兩點,兩點的縱坐標(biāo)分別為,.(1)求,的值;(2)求的值.19.如圖,在棱長為2的正方體中,E,F(xiàn)分別是棱的中點.(1)證明:平面;(2)求三棱錐的體積.20.已知函數(shù)(1)證明:;(2)若存在一個平行四邊形的四個頂點都在函數(shù)的圖象上,則稱函數(shù)具有性質(zhì)P,判斷函數(shù)是否具有性質(zhì)P,并證明你的結(jié)論;(3)設(shè)點,函數(shù).設(shè)點B是曲線上任意一點,求線段AB長度的最小值21.已知函數(shù)(且).(1)判斷函數(shù)的奇偶性,并證明;(2)若,不等式在上恒成立,求實數(shù)的取值范圍;(3)若且在上最小值為,求m的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】求得點C到直線l的距離d,根據(jù),等號成立時,求得點P,進而求得過的圓的方程,與已知圓的方程聯(lián)立求解.【詳解】設(shè)點C到直線l的距離為,由,此時,,方程為,即,與直線聯(lián)立得,因為共圓,其圓心為,半徑為,圓的方程為,與聯(lián)立,化簡整理得,答案:B2、A【解析】分析:討論函數(shù)的性質(zhì),可得答案.詳解:函數(shù)的定義域為,且即函數(shù)是奇函數(shù),又在都是單調(diào)遞增函數(shù),故函數(shù)在R上是增函數(shù)故選A.點睛:本題考查函數(shù)的奇偶性單調(diào)性,屬基礎(chǔ)題.3、A【解析】根據(jù)直線經(jīng)過第一、二、四象限判斷出即可得到結(jié)論.【詳解】由題意可知直線的斜率存在,方程可變形為,∵直線經(jīng)過第一、二、四象限,∴,∴且故選:A.4、C【解析】利用函數(shù)值是否是最值,判斷函數(shù)的對稱軸即可【詳解】當(dāng)x時,函數(shù)cos2π=1,函數(shù)取得最大值,所以x是函數(shù)的一條對稱軸故選C【點睛】對于函數(shù)由可得對稱軸方程,由可得對稱中心橫坐標(biāo).5、B【解析】分析:先根據(jù)得周期為2,由時單調(diào)性得單調(diào)性,再根據(jù)偶函數(shù)得單調(diào)性,最后根據(jù)單調(diào)性判斷選項正誤.詳解:因為,所以周期為2,因為當(dāng)時,單調(diào)遞增,所以單調(diào)遞增,因為,所以單調(diào)遞減,因為,,所以,,,,選B.點睛:利用函數(shù)性質(zhì)比較兩個函數(shù)值或兩個自變量的大小,首先根據(jù)函數(shù)的奇偶性轉(zhuǎn)化為單調(diào)區(qū)間上函數(shù)值,最后根據(jù)單調(diào)性比較大小,要注意轉(zhuǎn)化在定義域內(nèi)進行.6、B【解析】由平面向量的三角形法則和數(shù)乘向量可得解【詳解】由題意,故選:B【點睛】本題考查了平面向量的線性運算,考查了學(xué)生綜合分析,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題7、A【解析】,故選A8、B【解析】列舉每個事件所包含的基本事件,結(jié)合互斥事件和對立事件的定義,依次驗證即可.【詳解】解:對于A,事件:“至少有一個白球”與事件:“都是紅球”不能同時發(fā)生,但是對立,故A錯誤;對于B,事件:“恰好有一個白球”與事件:“都是紅球”不能同時發(fā)生,但從口袋內(nèi)任取兩個球時還有可能是兩個都是白球,所以兩個事件互斥而不對立,故B正確;對于C,事件:“至少有一個白球”與事件:“都是白球”可以同時發(fā)生,所以這兩個事件不是互斥的,故C錯誤;對于D,事件:“至少有一個白球”與事件:“至少一個紅球”可以同時發(fā)生,即“一個白球,一個紅球”,所以這兩個事件不是互斥的,故D錯誤.故選:B.9、D【解析】均值為;方差為,故選D.考點:數(shù)據(jù)樣本的均值與方差.10、C【解析】根據(jù)弧長計算出半徑,再利用面積公式得到答案.【詳解】弧長為cm的弧所對的圓心角為,則故選【點睛】本題考查了扇形面積,求出半徑是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù),利用誘導(dǎo)公式轉(zhuǎn)化為可求得結(jié)果.【詳解】因為,所以.故答案為:.【點睛】本題考查了利用誘導(dǎo)公式求值,解題關(guān)鍵是拆角:,屬于基礎(chǔ)題.12、【解析】根據(jù)扇形面積與周長公式代入列式,聯(lián)立可求解半徑.【詳解】根據(jù)扇形面積公式得,周長公式得,聯(lián)立可得.故答案為:13、+##【解析】根據(jù)平面向量的線性運算可得答案.【詳解】因為,所以,所以可解得故答案為:14、【解析】由已知條件分析在上的單調(diào)性,利用函數(shù)的奇偶性可得,再根據(jù)函數(shù)的單調(diào)性解不等式即可.【詳解】f(x)為偶函數(shù),且當(dāng)x≤0時,單調(diào)遞增,當(dāng)時,函數(shù)單調(diào)遞減,若>,f(x)為偶函數(shù),,,同時平方并化簡得,解得或,即不等式>的解集為.故答案為:【點睛】本題考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,屬于中檔題.15、【解析】由題意可得,從而可得答案.【詳解】函數(shù)的定義域滿足即,所以函數(shù)的定義域為故答案為:16、【解析】∵定義在上的函數(shù)∴故答案為點睛::(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時,應(yīng)從內(nèi)到外依次求值(2)當(dāng)給出函數(shù)值求自變量的值時,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)或.【解析】(1)先求出,再計算的值,發(fā)現(xiàn),得。(2)先利用向量的坐標(biāo)表示求出,的坐標(biāo),通過,列方程求出?!驹斀狻拷猓海?)證明:由題意可得,,,.(2)向量與的模相等,,.又,,解得,,又或.【點睛】本題考查向量垂直,向量的模的坐標(biāo)表示,注意計算不要出錯即可。18、(1),(2)【解析】(1)先利用任意角的三角函數(shù)的定義求出,再利用同角三角函數(shù)的關(guān)系可求得答案,(2)先利用誘導(dǎo)公式化簡,再代值計算即可【小問1詳解】因為在平面直角坐標(biāo)系中,角,的頂點均與坐標(biāo)原點重合,終邊分別與單位圓交于兩點,且兩點的縱坐標(biāo)分別為,,又因為,,根據(jù)三角函數(shù)的定義得:,,所以,,所以,.【小問2詳解】19、(1)證明見解析(2)【解析】(1)連接,設(shè),連接EF,EO,利用中位線和正方體的性質(zhì)證明四邊形是平行四邊形,進而可證平面;(2)由平面可得點F,到平面的距離相等,則,進而求得三棱錐的體積即可【詳解】(1)證明:連接,設(shè),連接EF,EO,因為E,F分別是棱的中點,所以,,因為正方體,所以,,所以,,所以四邊形是平行四邊形,所以,又平面,平面,所以平面(2)由(1)可得點F,到平面的距離相等,所以,又三棱錐的高為棱長,即,,所以.所以【點睛】本題考查線面平行的證明,考查三棱錐的體積,考查轉(zhuǎn)化思想20、(1)證明見解析;(2)函數(shù)具有性質(zhì)P,證明見解析;(3).【解析】(1)直接利用對數(shù)的運算求解;(2)取函數(shù)圖象上四個點,證明函數(shù)具有性質(zhì)P;(3)設(shè)(或),求出,再換元利用二次函數(shù)求函數(shù)的最值得解.【小問1詳解】解:【小問2詳解】解:由(1)知,的圖象關(guān)于點中心對稱,取函數(shù)圖象上兩點,,顯然線段CD的中點恰為點M;再取函數(shù)圖象上兩點,,顯然線段EF的中點也恰為點M因此四邊形CEDF的對角線互相平分,所以四邊形CEDF為平行四邊形,所以函數(shù)具有性質(zhì)P小問3詳解】解:,則(或),則,記(或),則,記,則,所以,當(dāng),即時,21、(1)為奇函數(shù),證明見解析.(2).(3).【解析】(1)根據(jù)函數(shù)的奇偶性的定義可得證;(2)由(1)得出是定義

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論