初一第二學期期末壓軸題數(shù)學試卷_第1頁
初一第二學期期末壓軸題數(shù)學試卷_第2頁
初一第二學期期末壓軸題數(shù)學試卷_第3頁
初一第二學期期末壓軸題數(shù)學試卷_第4頁
初一第二學期期末壓軸題數(shù)學試卷_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

一、解答題1.如圖所示,A(1,0)、點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(-3,2).(1)直接寫出點E的坐標;D的坐標(3)點P是線段CE上一動點,設∠CBP=x°,∠PAD=y°,∠BPA=z°,確定x,y,z之間的數(shù)量關(guān)系,并證明你的結(jié)論.2.如圖1,點在直線上,點在直線上,點在,之間,且滿足.(1)證明:;(2)如圖2,若,,點在線段上,連接,且,試判斷與的數(shù)量關(guān)系,并說明理由;(3)如圖3,若(為大于等于的整數(shù)),點在線段上,連接,若,則______.3.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點,點M,點N分別是直線CD,EF上一點(不與P,Q重合),連接PM,MN.(1)點M,N分別在射線QC,QF上(不與點Q重合),當∠APM+∠QMN=90°時,①試判斷PM與MN的位置關(guān)系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過N點作AB的平行線)(2)點M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關(guān)系.(注:此題說理時不能使用沒有學過的定理)4.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.5.如圖1,已知直線m∥n,AB是一個平面鏡,光線從直線m上的點O射出,在平面鏡AB上經(jīng)點P反射后,到達直線n上的點Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點O以適當?shù)慕嵌壬涑龊螅鋫鞑ヂ窂綖镺→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說明理由.6.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.7.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.8.閱讀材料,解答問題:如果一個四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱這個四位數(shù)“依賴數(shù)”,例如,自然數(shù)2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依賴數(shù)”.(1)請直接寫出最小的四位依賴數(shù);(2)若四位依賴數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結(jié)果除以7余3,這樣的數(shù)叫做“特色數(shù)”,求所有特色數(shù).(3)已知一個大于1的正整數(shù)m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均為正整數(shù)),在m的所有表示結(jié)果中,當nq﹣np取得最小時,稱“m=pq+n4”是m的“最小分解”,此時規(guī)定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因為1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色數(shù)”的F(m)的最大值.9.規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)記作(-3)④,讀作“-3的圈4次方”,一般地,把(a≠0)記作a?,讀作“a的圈

n次方”.(初步探究)(1)直接寫出計算結(jié)果:2③=___,()⑤=___;(2)關(guān)于除方,下列說法錯誤的是___A.任何非零數(shù)的圈2次方都等于1;

B.對于任何正整數(shù)n,1?=1;C.3④=4③;

D.負數(shù)的圈奇數(shù)次方結(jié)果是負數(shù),負數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?(1)試一試:仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.(-3)④=___;

5⑥=___;(-)⑩=___.(2)想一想:將一個非零有理數(shù)a的圈n次方寫成冪的形式等于___;(3)算一算:÷(?)④×(?2)⑤?(?)⑥÷10.定義:如果,那么稱b為n的布谷數(shù),記為.例如:因為,所以,因為,所以.(1)根據(jù)布谷數(shù)的定義填空:g(2)=________________,g(32)=___________________.(2)布谷數(shù)有如下運算性質(zhì):若m,n為正整數(shù),則,.根據(jù)運算性質(zhì)解答下列各題:①已知,求和的值;②已知.求和的值.11.閱讀下面的文字,解答問題.對于實數(shù)a,我們規(guī)定:用符號[a]表示不大于a的最大整數(shù);用{a}表示a減去[a]所得的差.例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法計算:[]={5﹣}=;(2)若[]=1,寫出所有滿足題意的整數(shù)x的值:.(3)已知y0是一個不大于280的非負數(shù),且滿足{}=0.我們規(guī)定:y1=[],y2=[],y3=[],…,以此類推,直到y(tǒng)n第一次等于1時停止計算.當y0是符合條件的所有數(shù)中的最大數(shù)時,此時y0=,n=.12.已知,在計算:的過程中,如果存在正整數(shù),使得各個數(shù)位均不產(chǎn)生進位,那么稱這樣的正整數(shù)為“本位數(shù)”.例如:2和30都是“本位數(shù)”,因為沒有進位,沒有進位;15和91都不是“本位數(shù)”,因為,個位產(chǎn)生進位,,十位產(chǎn)生進位.則根據(jù)上面給出的材料:(1)下列數(shù)中,如果是“本位數(shù)”請在后面的括號內(nèi)打“√”,如果不是“本位數(shù)”請在后面的括號內(nèi)畫“×”.106();111();400();2015().(2)在所有的四位數(shù)中,最大的“本位數(shù)”是,最小的“本位數(shù)”是.(3)在所有三位數(shù)中,“本位數(shù)”一共有多少個?13.如圖①,在平面直角坐標系中,點,,其中,是16的算術(shù)平方根,,線段由線段平移所得,并且點與點A對應,點與點對應.(1)點A的坐標為;點的坐標為;點的坐標為;(2)如圖②,是線段上不同于的任意一點,求證:;(3)如圖③,若點滿足,點是線段OA上一動點(與點、A不重合),連交于點,在點運動的過程中,是否總成立?請說明理由.14.問題情境:(1)如圖1,,,.求度數(shù).小穎同學的解題思路是:如圖2,過點作,請你接著完成解答.問題遷移:(2)如圖3,,點在射線上運動,當點在、兩點之間運動時,,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點作),請說明理由;(3)在(2)的條件下,如果點在、兩點外側(cè)運動時(點與點、、三點不重合),請你猜想、、之間的數(shù)量關(guān)系并證明.15.如圖,在平面直角坐標系中,已知△ABC,點A的坐標是(4,0),點B的坐標是(2,3),點C在x軸的負半軸上,且AC=6.(1)直接寫出點C的坐標.(2)在y軸上是否存在點P,使得S△POB=S△ABC若存在,求出點P的坐標;若不存在,請說明理由.(3)把點C往上平移3個單位得到點H,作射線CH,連接BH,點M在射線CH上運動(不與點C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.16.某地葡萄豐收,準備將已經(jīng)采摘下來的11400公斤葡萄運送杭州,現(xiàn)有甲、乙、丙三種車型共選擇,每輛車運載能力和運費如表表示(假設每輛車均滿載)車型甲乙丙汽車運載量(公斤/輛)600800900汽車運費(元/輛)500600700(1)若全部葡萄都用甲、乙兩種車型來運,需運費8700元,則需甲、乙兩種車型各幾輛?(2)為了節(jié)省運費,現(xiàn)打算用甲、乙、丙三種車型都參與運送,已知它們的總輛數(shù)為15輛,你能分別求出這三種車型的輛數(shù)嗎?怎樣安排運費最?。?7.如圖1,在平面直角坐標系中,,且滿足,過作軸于.(1)求的面積.(2)若過作交軸于,且分別平分,如圖2,求的度數(shù).(3)在軸上存在點使得和的面積相等,請直接寫出點坐標.18.如圖,點A(1,n),B(n,1),我們定義:將點A向下平移1個單位,再向右平移1個單位,同時點B向上平移1個單位,再向左平移1個單位稱為一次操作,此時平移后的兩點記為A1,B1,t次操作后兩點記為At,Bt.(1)直接寫出A1,B1,At,Bt的坐標(用含n、t的式子表示);(2)以下判斷正確的是.A.經(jīng)過n次操作,點A,點B位置互換B.經(jīng)過(n﹣1)次操作,點A,點B位置互換C.經(jīng)過2n次操作,點A,點B位置互換D.不管幾次操作,點A,點B位置都不可能互換(3)t為何值時,At,B兩點位置距離最近?19.我國傳統(tǒng)數(shù)學名著《九章算術(shù)》記載:“今有牛五、羊二,直金十九兩;牛二、羊五,直金十六兩.問牛、羊各直金幾何?”譯文:“假設有5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子.問每頭牛、每只羊分別值銀子多少兩?”根據(jù)以上譯文,提出以下兩個問題:(1)求每頭牛、每只羊各值多少兩銀子?(2)若某商人準備用20兩銀子買牛和羊(要求既有牛也有羊,且銀兩須全部用完),請問商人有幾種購買方法?列出所有的可能.20.某企業(yè)用規(guī)格是170cm×40cm的標準板材作為原材料,按照圖①所示的裁法一或裁法二,裁剪出甲型與乙型兩種板材(單位:cm).(1)求圖中a、b的值;(2)若將40張標準板材按裁法一裁剪,5張標準板材按裁法二裁剪,裁剪后將得到的甲型與乙型板材做側(cè)面或底面,做成如圖②所示的豎式與橫式兩種無蓋的裝飾盒若干個(接縫處的長度忽略不計).①一共可裁剪出甲型板材張,乙型板材張;②恰好一共可以做出豎式和橫式兩種無蓋裝飾盒子多少個?21.如圖,已知,,且滿足.(1)求、兩點的坐標;(2)點在線段上,、滿足,點在軸負半軸上,連交軸的負半軸于點,且,求點的坐標;(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點,過作軸于,若,且,求點的坐標.22.用如圖1的長方形和正方形鐵片(長方形的寬與正方形的邊長相等)作側(cè)面和底面、做成如圖2的豎式和橫式的兩種無蓋的長方體容器,(1)現(xiàn)有長方形鐵片2014張,正方形鐵片1176張,如果將兩種鐵片剛好全部用完,那么可加工成豎式和橫式長方體容器各有幾個?(2)現(xiàn)有長方形鐵片a張,正方形鐵片b張,如果加工這兩種容器若干個,恰好將兩種鐵片剛好全部用完.則的值可能是()A.2019B.2020C.2021D.2022(3)給長方體容器加蓋可以加工成鐵盒.先工廠倉庫有35張鐵皮可以裁剪成長方形和正方形鐵片,用來加工鐵盒,已知1張鐵皮可裁剪出3張長方形鐵片或4張正方形鐵片,也可以裁剪出1張長方形鐵片和2張正方形鐵片.請問怎樣充分利用這35張鐵皮,最多可以加工成多少個鐵盒?23.某治污公司決定購買10臺污水處理設備.現(xiàn)有甲、乙兩種型號的設備可供選擇,其中每臺的價格與月處理污水量如下表:甲型乙型價格(萬元/臺)xy處理污水量(噸/月)300260經(jīng)調(diào)查:購買一臺甲型設備比購買一臺乙型設備多2萬元,購買3臺甲型設備比購買4臺乙型設備少2萬元.(1)求x,y的值;(2)如果治污公司購買污水處理設備的資金不超過91萬元,求該治污公司有哪幾種購買方案;(3)在(2)的條件下,如果月處理污水量不低于2750噸,為了節(jié)約資金,請為該公司設計一種最省錢的購買方案.24.閱讀材料:形如的不等式,我們就稱之為雙連不等式.求解雙連不等式的方法一,轉(zhuǎn)化為不等式組求解,如;方法二,利用不等式的性質(zhì)直接求解,雙連不等式的左、中、右同時減去1,得,然后同時除以2,得.解決下列問題:(1)請你寫一個雙連不等式并將它轉(zhuǎn)化為不等式組;(2)利用不等式的性質(zhì)解雙連不等式;(3)已知,求的整數(shù)值.25.對于實數(shù)x,若,則符合條件的中最大的正數(shù)為的內(nèi)數(shù),例如:8的內(nèi)數(shù)是5;7的內(nèi)數(shù)是4.(1)1的內(nèi)數(shù)是______,20的內(nèi)數(shù)是______,6的內(nèi)數(shù)是______;(2)若3是x的內(nèi)數(shù),求x的取值范圍;(3)一動點從原點出發(fā),以3個單位/秒的速度按如圖1所示的方向前進,經(jīng)過秒后,動點經(jīng)過的格點(橫,縱坐標均為整數(shù)的點)中能圍成的最大實心正方形的格點數(shù)(包括正方形邊界與內(nèi)部的格點)為,例如當時,,如圖2①……;當時,,如圖2②,③;……①用表示的內(nèi)數(shù);②當?shù)膬?nèi)數(shù)為9時,符合條件的最大實心正方形有多少個,在這些實心正方形的格點中,直接寫出離原點最遠的格點的坐標.(若有多點并列最遠,全部寫出)26.對、定義了一種新運算T,規(guī)定(其中,均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:,已知,.(1)求,的值;(2)求.(3)若關(guān)于的不等式組恰好有4個整數(shù)解,求的取值范圍.27.已知關(guān)于x、y的二元一次方程(1)若方程組的解x、y滿足,求a的取值范圍;(2)求代數(shù)式的值.28.如圖,在平面直角坐標系中,點的坐標分別為(1,0)、(-2,0),現(xiàn)同時將點分別向上平移2個單位,再向左平移1個單位,分別得到點的對應點,連接、、.(1)若在軸上存在點,連接,使S△ABM=S□ABDC,求出點的坐標;(2)若點在線段上運動,連接,求S=S△PCD+S△POB的取值范圍;(3)若在直線上運動,請直接寫出的數(shù)量關(guān)系.29.閱讀以下內(nèi)容:已知有理數(shù)m,n滿足m+n=3,且求k的值.三位同學分別提出了以下三種不同的解題思路:甲同學:先解關(guān)于m,n的方程組,再求k的值;乙同學:將原方程組中的兩個方程相加,再求k的值;丙同學:先解方程組,再求k的值.(1)試選擇其中一名同學的思路,解答此題;(2)在解關(guān)于x,y的方程組時,可以用①×7﹣②×3消去未知數(shù)x,也可以用①×2+②×5消去未知數(shù)y.求a和b的值.30.學校美術(shù)組要去商店購買鉛筆和橡皮,若購買60支鉛筆和30塊橡皮,則需按零售價購買,共支付30元;若購買90支鉛筆和60塊橡皮,則可按批發(fā)價購買,共支付40.5元.已知每支鉛筆的批發(fā)價比零售價低0.05元,每塊橡皮的批發(fā)價比零售價低0.10元.(1)求每支鉛筆和每塊橡皮的批發(fā)價各是多少元?(2)小亮同學用4元錢在這家商店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),共有哪幾種購買方案?【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)(-2,0);(-3,0);(2)z=x+y.證明見解析.【分析】(1)依據(jù)平移的性質(zhì)可知BC∥x軸,BC=AE=3,然后依據(jù)點A和點C的坐標可得到點E和點D的坐標;(2過點P作PF∥BC交AB于點F,則PF∥AD,然后依據(jù)平行線的性質(zhì)可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依據(jù)角的和差關(guān)系進行解答即可.【詳解】解:(1)∵將三角形OAB沿x軸負方向平移,∴BC∥x軸,BC=AE=3.∵C(-3,2),A(1,0),∴E(-2,0),D(-3,0).故答案為:(-2,0);(-3,0).(2)z=x+y.證明如下:如圖,過點P作PF∥BC交AB于點F,則PF∥AD,∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°,∴∠BPA=∠BPF+∠APF=x°+y°=z°,∴z=x+y.【點睛】此題是幾何變換綜合題,主要考查了點的坐標的特點,平移得性質(zhì),平面坐標系中點的坐標和距離的關(guān)系,解本題的關(guān)鍵是由線段和部分點的坐標,得出其它點的坐標.2.(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)AD∥BC,得到∠DAC=120°,求出∠CAE即可得到結(jié)論;(3)作CF∥ST,設∠CBT=β,得到∠CBT=∠BCF=β,分別表示出∠CAN和∠CAE,即可得到比值.【詳解】解:(1)如圖,連接,,,,,(2),理由:作,則如圖,設,則.,,,,.即.(3)作,則如圖,設,則.,,,,,故答案為.【點睛】本題主要考查平行線的性質(zhì)和判定,解題關(guān)鍵是角度的靈活轉(zhuǎn)換,構(gòu)建數(shù)量關(guān)系式.3.(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過點N作NH∥CD,利用角平分線的定義以及平行線的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當點M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當點M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當點M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點睛】本題主要考查了平行線的判定與性質(zhì),熟練掌握兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,同位角相等等知識是解題的關(guān)鍵.4.(1)PB′⊥QC′;(2)當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進而得結(jié)論;(2)分三種情況:①當0<t≤15時,②當15<t≤30時,③當30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運用方程思想解決幾何問題.5.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問題的設置環(huán)環(huán)相扣、前為后用的設置目的.6.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點M作EF∥AB,過點N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯角相等,兩直線平行).∴AB//CD.(2)過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點M作EF∥AB,過點N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點睛】本題考查了平行線的性質(zhì)與判定,屬于基礎題,關(guān)鍵是過E點作AB(或CD)的平行線,把復雜的圖形化歸為基本圖形.7.(1)5,3;(2)有正格數(shù)對,正格數(shù)對為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對.將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對為:.【點睛】本題考查的知識點是實數(shù)的運算,理解新定義是解此題的關(guān)鍵.8.(1)1022;(2)3066,2226;(3)【分析】(1)由于千位不能為0,最小只能取1;根據(jù)題目得出相應的公式:十位=2×千位﹣百位,個位=2×千位+百位,分別求出十位和個位,即可求出最小的四位依賴數(shù);(2)設千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),依據(jù)題意列出代數(shù)式然后表示為7的倍數(shù)加余數(shù)形式,然后求出x、y即可,從而求出所有特色數(shù);(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,故將(2)中特色數(shù)分解,找到最小分解,然后將n、p、q的值代入F(m)=,再比較大小即可.【詳解】解:(1)由題意可知:千位一定是1,百位取0,十位上的數(shù)字為:2×1-0=2,個位上的數(shù)字為:2×1+0=2則最小的四位依賴數(shù)是1022;(2)設千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),根據(jù)題意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非負整數(shù))∴此方程的一位整數(shù)解為:x=4,y=5(此時2x+y>10,故舍去);x=3,y=7(此時2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此時2x﹣y<0,故舍去);∴特色數(shù)是3066,2226.(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,由(2)可知:特色數(shù)有3066和2226兩個,對于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解時:n=2,p=50,q=61∴F(3066)=對于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解時:n=2,p=34,q=65∴F(2226)=∵故所有“特色數(shù)”的F(m)的最大值為:.【點睛】此題考查的是新定義類問題,理解題意,并根據(jù)新定義解決問題是解決此題的關(guān)鍵.9.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5.【分析】初步探究:(1)根據(jù)除方運算的定義即可得出答案;(2)根據(jù)除方運算的定義逐一判斷即可得出答案;深入思考:(1)根據(jù)除方運算的定義即可得出答案;(2)根據(jù)(1)即可總結(jié)出(2)中的規(guī)律;(3)先按照除方的定義將每個數(shù)的圈n次方算出來,再根據(jù)有理數(shù)的混合運算法則即可得出答案.【詳解】解:初步探究:(1)2③=2÷2÷2=()⑤=(2)A:任何非零數(shù)的圈2次方就是兩個相同數(shù)相除,所以都等于1,故選項A錯誤;B:因為多少個1相除都是1,所以對于任何正整數(shù)n,1?都等于1,故選項B錯誤;C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故選項C正確;D:負數(shù)的圈奇數(shù)次方,相當于奇數(shù)個負數(shù)相除,則結(jié)果是負數(shù);負數(shù)的圈偶數(shù)次方,相當于偶數(shù)個負數(shù)相除,則結(jié)果是正數(shù),故選項D錯誤;故答案選擇:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=

5⑥=5÷5÷5÷5÷5÷5=(-)⑩=(2)a?=a÷a÷a…÷a=(3)原式====-5【點睛】本題主要考查了除方運算,運用到的知識點是有理數(shù)的混合運算,掌握有理數(shù)混合運算的法則是解決本題的關(guān)鍵.10.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根據(jù)布谷數(shù)的定義把2和32化為底數(shù)為2的冪即可得出答案;(2)①根據(jù)布谷數(shù)的運算性質(zhì),g(14)=g(2×7)=g(2)+g(7),,再代入數(shù)值可得解;②根據(jù)布谷數(shù)的運算性質(zhì),先將兩式化為,,再代入求解.【詳解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案為1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案為3.807,0.807;②∵.∴;.【點睛】本題考查有理數(shù)的乘方運算,新定義;能夠?qū)⑿露x的運算轉(zhuǎn)化為有理數(shù)的乘方運算是解題的關(guān)鍵.11.(1)2;3﹣;(2)1、2、3;(3)256,4【分析】(1)依照定義進行計算即可;(2)由題可知,,則可得滿足題意的整數(shù)的的值為1、2、3;(3)由,可知,是某個整數(shù)的平方,又是符合條件的所有數(shù)中最大的數(shù),則,再依次進行計算.【詳解】解:(1)由定義可得,,,.故答案為:2;.(2),,即,整數(shù)的值為1、2、3.故答案為:1、2、3.(3),即,可設,且是自然數(shù),是符合條件的所有數(shù)中的最大數(shù),,,,,,即.故答案為:256,4.【點睛】本題屬于新定義類問題,主要考查估算無理數(shù)大小,無理數(shù)的整數(shù)部分和小數(shù)部分,理解定義內(nèi)容是解題關(guān)鍵.12.(1)×,√,×,×;(2)3332;1000;(3)(個).【分析】(1)根據(jù)“本位數(shù)”的定義即可判斷;(2)要想保證不進位,千位、百位、十位最大只能是3,個位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個位最小為0,故最小的“本位數(shù)”是1000;(3)要想構(gòu)成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個).【詳解】解:(1)有進位;沒有進位;有進位;有進位;故答案為:×,√,×,×.(2)要想保證不進位,千位、百位、十位最大只能是3,個位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個位最小為0,故最小的“本位數(shù)”是1000,故答案為:3332,1000.(3)要想構(gòu)成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個).【點睛】本題考查了新定義計算題,準確理解新定義的內(nèi)涵是解題的關(guān)鍵.13.(1),,;(2)證明見解析;(3)成立,理由見解析【分析】(1)根據(jù)算術(shù)平方根、立方根得、;再根據(jù)直角坐標系、平移的性質(zhì)分析,即可得到答案;(2)根據(jù)平移的性質(zhì),得;根據(jù)平行線性質(zhì),分別推導得,,從而完成證明;(3)結(jié)合題意,根據(jù)平行線的性質(zhì),推導得、;結(jié)合(2)的結(jié)論,通過計算即可完成證明.【詳解】(1)連接∵是16的算術(shù)平方根∴∴∴∵∴∴∴∵線段由線段平移所得,并且點與點A對應,點與點對應∴,∴故答案為:,,;(2)∵線段由線段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的結(jié)論得:,∵,∴∴∵∴∴∴在點運動的過程中,總成立.【點睛】本題考查了算術(shù)平方根、立方根、平行線、平移、直角坐標系的知識;解題的關(guān)鍵是熟練掌握直角坐標系、平移、平行線的性質(zhì),從而完成求解.14.(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點P在BA的延長線上,②當在之間時(點不與點,重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當在延長線時(點不與點重合),;理由:如圖4,過作交于,,,,,,,,又,;②當在之間時(點不與點,重合),.理由:如圖5,過作交于,,,,,,,,又.【點睛】本題考查了平行線的性質(zhì)的應用,主要考查學生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角以及同旁內(nèi)角.15.(1)C(-2,0);(2)點P坐標為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明見解析.【分析】(1)由點A坐標可得OA=4,再根據(jù)C點x軸負半軸上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根據(jù)S△POB=S△ABC,可得OP=6,即可寫出點P的坐標;(3)先得到點H的坐標,再結(jié)合點B的坐標可得到BH//AC,然后根據(jù)點M在射線CH上,分點M在線段CH上與不在線段CH上兩種情況分別進行討論即可得.【詳解】(1)∵A(4,0),∴OA=4,∵C點x軸負半軸上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=×6×3=9,S△BOP=OP×2=OP,又∵S△POB=S△ABC,∴OP=×9=6,∴點P坐標為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明如下:∵把點C往上平移3個單位得到點H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如圖1,當點M在線段HC上時,過點M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如圖2,當點M在射線CH上但不在線段HC上時,過點M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;綜上,∠BMA=∠MAC±∠HBM.【點睛】本題考查了點的坐標,三角形的面積,點的平移,平行線的判定與性質(zhì)等知識,綜合性較強,正確進行分類并準確畫出圖形是解題的關(guān)鍵.16.(1)甲3輛,乙12輛;(2)有三種方案,具體見解析,甲4輛,乙9輛,丙2輛最省錢.【分析】(1)設需要甲x輛,乙y輛,根據(jù)運送11400公斤和需運費8700元,可列出方程組求解.(2)設需要甲x輛,乙y輛,則丙(15﹣x﹣y)輛,根據(jù)甲汽車運載量+乙汽車運載量+丙汽車運載量=11400,列方程,化簡后,根據(jù)甲、乙、丙三種車型都參與運送,即x>0,y>0,15﹣x﹣y>0,解不等式即可求出x的范圍,進而得出方案.計算出每種方案需要的運費,比較即可得出運費最省的方案.【詳解】(1)設需要甲x輛,乙y輛,根據(jù)題意得:解得:.答:甲3輛,乙12輛;(2)設需要甲x輛,乙y輛,則丙(15﹣x﹣y)輛,根據(jù)題意得:600x+800y+900(15﹣x﹣y)=11400化簡得:y=21﹣3x.∵x>0,y=21﹣3x>0,15﹣x﹣y=2x-6>0,解得:3<x<7.∵x為整數(shù),∴x=4,5,6.因此方案有三種:方案①:甲4輛,乙9輛,丙2輛;方案②:甲5輛,乙6輛,丙4輛;方案③:甲6輛,乙3輛,丙6輛;則運費分別為:①4×500+9×600+2×700=8800(元).②5×500+6×600+4×700=8900(元);③6×500+3×600+6×700=9000(元).故第一種方案運費最省,為8800元.【點睛】本題考查了二元一次方程組與二元一次方程的實際運用,找出題目蘊含的數(shù)量關(guān)系,建立方程或方程組解決問題.17.(1)4;(2);(2)或.【分析】(1)根據(jù)非負數(shù)的性質(zhì)易得,,然后根據(jù)三角形面積公式計算;(2)過作,根據(jù)平行線性質(zhì)得,且,,所以;然后把代入計算即可;(3)分類討論:設,當在軸正半軸上時,過作軸,軸,軸,利用可得到關(guān)于的方程,再解方程求出;當在軸負半軸上時,運用同樣方法可計算出.【詳解】解:(1),,,,,,,,的面積;(2)解:軸,,,又∵,∴,過作,如圖①,,,,,分別平分,,即:,,;(3)或.解:①當在軸正半軸上時,如圖②,設,過作軸,軸,軸,,,解得,②當在軸負半軸上時,如圖③,解得,綜上所述:或.【點睛】本題考查了平行線的判定與性質(zhì):兩直線平行,內(nèi)錯角相等.也考查了非負數(shù)的性質(zhì)、坐標與圖形性質(zhì)以及三角形面積公式.構(gòu)造矩形求三角形面積是解題關(guān)鍵.18.(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)B;(3)t=或t=或t=【分析】(1)根據(jù)點在平面直角坐標系中的平移規(guī)律求解可得答案;(2)由1+t=n時t=n﹣1,知n﹣t=n﹣(n﹣1)=1,據(jù)此可得答案;(3)分n為奇數(shù)和偶數(shù)兩種情況,得出對應的方程,解之可得n關(guān)于t的式子.【詳解】解:(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)當1+t=n時,t=n﹣1.此時n﹣t=n﹣(n﹣1)=1,故選:B;(3)當n為奇數(shù)時:1+t=n﹣t解得t=,當n為偶數(shù)時:1+t=n﹣t+1解得t=,或1+t=n﹣t﹣1解得t=.【點睛】本題主要考查坐標與圖形變化—平移,解題的關(guān)鍵是掌握點在平面直角坐標系中的平移規(guī)律:橫坐標,右移加,左移減;縱坐標,上移加,下移減.19.(1)每頭牛3兩銀子,每頭羊2兩銀子;(2)共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊【分析】(1)設每頭牛值x兩銀子,每只羊值y兩銀子,根據(jù)“5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設購買a頭牛,b只羊,利用總價=單價×數(shù)量,即可得出關(guān)于a,b的二元一次方程,結(jié)合a,b均為正整數(shù),即可得出各購買方案.【詳解】解:(1)設每頭牛x兩銀子,每頭羊y兩銀子,根據(jù)題意,得解得答:每頭牛3兩銀子,每頭羊2兩銀子.(含設)(2)設該商人購買了a頭牛,b頭羊,根據(jù)題意,得∵a、b均為正整數(shù)∴該方程的解為或或所以共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊.【點睛】本題考查了二元一次方程組的應用、數(shù)學常識以及二元一次方程的應用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出二元一次方程組;(2)找準等量關(guān)系,正確列出二元一次方程.20.(1)60,40;(2)①甲:85;乙50;②27【分析】(1)由圖示列出關(guān)于a、b的二元一次方程組求解.(2)①根據(jù)已知和圖示計算出兩種裁法共產(chǎn)生甲型板材和乙型板材的張數(shù);②根據(jù)豎式與橫式禮品盒所需要的甲、乙兩種型號板材的張數(shù)列出關(guān)于m、n的二元一次方程,求解,即可得出結(jié)論.【詳解】解:(1)依題意,得:解得:a=60b=40答:a、b的值分別為60,40.(2)①一共可裁剪出甲型板材40×2+5=85(張)乙型板材40+5×2=50(張).故答案是:85,50;②設可做成m個豎式無蓋裝飾盒,n個橫式無蓋裝飾盒.依題意得:,解得:m=4,n=23所以m+n=27,故答案為27個【點睛】本題考查的知識點是二元一次方程組的應用,關(guān)鍵是根據(jù)已知先列出二元一次方程組求出a、b的值,根據(jù)圖示列出算式以及關(guān)于m、n的二元一次方程.21.(1),;(2);(3)【解析】【分析】(1)利用非負數(shù)的性質(zhì)即可解決問題;(2)利用三角形面積求法,由列方程組,求出點C坐標,進而由△ACD面積求出D點坐標.(3)由平行線間距離相等得到,繼而求出E點坐標,同理求出F點坐標,再由GE=12求出G點坐標,根據(jù)求出PG的長即可求P點坐標.【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點睛】本題考查的是二元一次方程的應用、三角形的面積公式、坐標與圖形的性質(zhì)、平移的性質(zhì),靈活運用分情況討論思想、掌握平移規(guī)律是解題的關(guān)鍵.22.(1)豎式長方體鐵容器100個,橫式長方體鐵容器538個;(2)B;(3)19個【分析】(1)設可以加工豎式長方體鐵容器x個,橫式長方體鐵容器y個,根據(jù)加工的兩種長方體鐵容器共用了長方形鐵片2014張、正方形鐵片1176張,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設豎式紙盒c個,橫式紙盒d個,由題意列出方程組可求解.(3)設做長方形鐵片的鐵板為m塊,做正方形鐵片的鐵板為n塊,由鐵板的總數(shù)量及所需長方形鐵片的數(shù)量為正方形鐵皮的2倍,即可得出關(guān)于m,n的二元一次方程組,解之即可得出m,n的值,取其整數(shù)部分再將剩余鐵板按一張鐵板裁出1個長方形鐵片和2個正方形鐵片處理,即可得出結(jié)論.【詳解】解:(1)設可以加工豎式長方體鐵容器x個,橫式長方體鐵容器y個,依題意,得:,解得:,答:可以加工豎式長方體鐵容器100個,橫式長方體鐵容器538個.(2)設豎式紙盒c個,橫式紙盒d個,根據(jù)題意得:,∴5c+5d=5(c+d)=a+b,∴a+b是5的倍數(shù),可能是2020,故選B;(3)設做長方形鐵片的鐵板為m塊,做正方形鐵片的鐵板為n塊,依題意,得:,解得:,∵在這35塊鐵板中,25塊做長方形鐵片可做25×3=75(張),9塊做正方形鐵片可做9×4=36(張),剩下1塊可裁出1張長方形鐵片和2張正方形鐵片,∴共做長方形鐵片75+1=76(張),正方形鐵片36+2=38(張),∴可做鐵盒76÷4=19(個).答:最多可以加工成19個鐵盒.【點睛】本題考查了二元一次方程組的應用以及二元一次方程的應用,解題的關(guān)鍵是:找準等量關(guān)系,正確列出二元一次方程(組).23.(1);(2)該公司有6種購買方案,方案1:購買10臺乙型設備;方案2:購買1臺甲型設備,9臺乙型設備;方案3:購買2臺甲型設備,8臺乙型設備;方案4:購買3臺甲型設備,7臺乙型設備;方案5:購買4臺甲型設備,6臺乙型設備;方案6:購買5臺甲型設備,5臺乙型設備;(3)最省錢的購買方案為:購買4臺甲型設備,6臺乙型設備.【分析】(1)由一臺A型設備的價格是x萬元,一臺乙型設備的價格是y萬元,根據(jù)題意得等量關(guān)系:購買一臺甲型設備-購買一臺乙型設備=2萬元,購買4臺乙型設備-購買3臺甲型設備=2萬元,根據(jù)等量關(guān)系,列出方程組,再解即可;(2)設購買甲型設備m臺,則購買乙型設備(10-m)臺,由題意得不等關(guān)系:購買甲型設備的花費+購買乙型設備的花費≤91萬元,根據(jù)不等關(guān)系列出不等式,再解即可;(3)由題意可得:甲型設備處理污水量+乙型設備處理污水量≥2750噸,根據(jù)不等關(guān)系,列出不等式,再解即可.【詳解】(1)依題意,得:,解得:.(2)設該治污公司購進m臺甲型設備,則購進(10﹣m)臺乙型設備,依題意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m為非零整數(shù),∴m=0,1,2,3,4,5,∴該公司有6種購買方案,方案1:購買10臺乙型設備;方案2:購買1臺甲型設備,9臺乙型設備;方案3:購買2臺甲型設備,8臺乙型設備;方案4:購買3臺甲型設備,7臺乙型設備;方案5:購買4臺甲型設備,6臺乙型設備;方案6:購買5臺甲型設備,5臺乙型設備.(3)依題意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.當m=4時,總費用為10×4+8×6=88(萬元);當m=5時,總費用為10×5+8×5=90(萬元).∵88<90,∴最省錢的購買方案為:購買4臺甲型設備,6臺乙型設備.【點睛】此題主要考查了二元一次方程組的應用和一元一次不等式的應用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系和不等關(guān)系,列出方程(組)和不等式.24.(1)見解析;(2);(3)或【分析】(1),轉(zhuǎn)化為不等式組;(2)根據(jù)方法二的步驟解答即可;(3)根據(jù)方法二的步驟解答,得出,即可得到結(jié)論.【詳解】解:(1),轉(zhuǎn)化為不等式組;(2),不等式的左、中、右同時減去3,得,同時除以,得;(3),不等式的左、中、右同時乘以3,得,同時加5,得,的整數(shù)值或.【點睛】本題考查了解一元一次不等式組,參照方法二解不等式組是解題的關(guān)鍵,應用的是不等式的性質(zhì).25.(1)2,7,4;(2);(3)①t的內(nèi)數(shù);②符合條件的最大實心正方形有2個,離原點最遠的格點的坐標有兩個,為.【分析】(1)根據(jù)內(nèi)數(shù)的定義即可求解;(2)根據(jù)內(nèi)數(shù)的定義可列不等式,求解即可;(3)①分析可得當時,即t的內(nèi)數(shù)為2時,;當時,即t的內(nèi)數(shù)為3時,,當時,即t的內(nèi)數(shù)為4時,……歸納可得結(jié)論;②分析可得當t的內(nèi)數(shù)為奇數(shù)時,最大實心正方形有2個;當t的內(nèi)數(shù)為偶數(shù)時,最大實心正方形有1個;且最大實心正方形的邊長為:的內(nèi)數(shù)-1,即可求解.【詳解】解:(1),所以1的內(nèi)數(shù)是2;,所以20的內(nèi)數(shù)是7;,所以6的內(nèi)數(shù)是4;(2)∵3是x的內(nèi)數(shù),∴,解得;(3)①當時,即t的內(nèi)數(shù)為2時,;當時,即t的內(nèi)數(shù)為3時,,當時,即t的內(nèi)數(shù)為4時,,……∴t的內(nèi)數(shù);②當t的內(nèi)數(shù)為2時,最大實心正方形有1個;當t的內(nèi)數(shù)為3時,最大實心正方形有2個,當t的內(nèi)數(shù)為4時,最大實心正方形有1個,……即當t的內(nèi)數(shù)為奇數(shù)時,最大實心正方形有2個;當t的內(nèi)數(shù)為偶數(shù)時,最大實心正方形有1個;∴當?shù)膬?nèi)數(shù)為9時,符合條件的最大實心正方形有2個,由前幾個例子推理可得最大實心正方形的邊長為:的內(nèi)數(shù)-1,∴此時最大實心正方形的邊長為8,離原點最遠的格點的坐標有兩個,為.【點睛】本題考查圖形類規(guī)律探究,明確題干中內(nèi)數(shù)的定義是解題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論