版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足,過C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點P,使得△ABC和△OCP的面積相等,若存在,求出點P坐標,若不存在,試說明理由.(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數(shù);②求:∠AED的度數(shù).2.已知點C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關系(用含α的代數(shù)式表示)(3)在②中,過點O′作OB的垂線,與∠OCD的平分線交于點P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關系.3.如圖1,點在直線、之間,且.(1)求證:;(2)若點是直線上的一點,且,平分交直線于點,若,求的度數(shù);(3)如圖3,點是直線、外一點,且滿足,,與交于點.已知,且,則的度數(shù)為______(請直接寫出答案,用含的式子表示).4.已知AB∥CD,線段EF分別與AB,CD相交于點E,F(xiàn).(1)請在橫線上填上合適的內容,完成下面的解答:如圖1,當點P在線段EF上時,已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當點P,Q在線段EF上移動時(不包括E,F(xiàn)兩點):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請直接寫出∠M,∠A與∠C的數(shù)量關系.5.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關系?并請說明理由;(3)當AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關系.6.已知AB//CD.(1)如圖1,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D;(2)如圖,連接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直線交于點F.①如圖2,當點B在點A的左側時,若∠ABC=50°,∠ADC=60°,求∠BFD的度數(shù).②如圖3,當點B在點A的右側時,設∠ABC=α,∠ADC=β,請你求出∠BFD的度數(shù).(用含有α,β的式子表示)7.據(jù)說,我國著名數(shù)學家華羅庚在一次訪問途中,看到飛機鄰座的乘客閱讀的雜志上有一道智力題:一個數(shù)32768,它是一個正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準確計算出的嗎?請按照下面的問題試一試:(1)由,因為,請確定是______位數(shù);(2)由32768的個位上的數(shù)是8,請確定的個位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因為,請確定的十位上的數(shù)是_____________(3)已知13824和分別是兩個數(shù)的立方,仿照上面的計算過程,請計算:=____;8.規(guī)律探究,觀察下列等式:第1個等式:第2個等式:第3個等式:第4個等式:請回答下列問題:(1)按以上規(guī)律寫出第5個等式:=___________=___________(2)用含n的式子表示第n個等式:=___________=___________(n為正整數(shù))(3)求9.在已有運算的基礎上定義一種新運算:,的運算級別高于加減乘除運算,即的運算順序要優(yōu)先于運算,試根據(jù)條件回答下列問題.(1)計算:;(2)若,則;(3)在數(shù)軸上,數(shù)的位置如下圖所示,試化簡:;(4)如圖所示,在數(shù)軸上,點分別以1個單位每秒的速度從表示數(shù)-1和3的點開始運動,點向正方向運動,點向負方向運動,秒后點分別運動到表示數(shù)和的點所在的位置,當時,求的值.10.我們知道,正整數(shù)按照能否被2整除可以分成兩類:正奇數(shù)和正偶數(shù),小華受此啟發(fā),按照一個正整數(shù)被3除的余數(shù)把正整數(shù)分成了三類:如果一個正整數(shù)被3除余數(shù)為1,則這個正整數(shù)屬于A類,例如1,4,7等;如果一個正整數(shù)被3除余數(shù)為2,則這個正整數(shù)屬于B類,例如2,5,8等;如果一個正整數(shù)被3整除,則這個正整數(shù)屬于C類,例如3,6,9等.(1)2020屬于類(填A,B或C);(2)①從A類數(shù)中任取兩個數(shù),則它們的和屬于類(填A,B或C);②從A、B類數(shù)中任取一數(shù),則它們的和屬于類(填A,B或C);③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們都加起來,則最后的結果屬于類(填A,B或C);(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),把它們都加起來,若最后的結果屬于C類,則下列關于m,n的敘述中正確的是(填序號).①屬于C類;②屬于A類;③,屬于同一類.11.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.12.閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,而<2于是可用來表示的小數(shù)部分.請解答下列問題:(1)的整數(shù)部分是_______,小數(shù)部分是_________;(2)如果的小數(shù)部分為的整數(shù)部分為求的值;(3)已知:其中是整數(shù),且求的平方根.13.已知A(0,a)、B(b,0),且+(b﹣4)2=0.(1)直接寫出點A、B的坐標;(2)點C為x軸負半軸上一點滿足S△ABC=15.①如圖1,平移直線AB經過點C,交y軸于點E,求點E的坐標;②如圖2,若點F(m,10)滿足S△ACF=10,求m.(3)如圖3,D為x軸上B點右側的點,把點A沿y軸負半軸方向平移,過點A作x軸的平行線l,在直線l上取兩點G、H(點H在點G右側),滿足HB=8,GD=6.當點A平移到某一位置時,四邊形BDHG的面積有最大值,直接寫出面積的最大值.14.綜合與實踐課上,同學們以“一個直角三角形和兩條平行線”為背景開展數(shù)學活動,如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.(3)如圖3,若∠A=30°,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關系,請寫出與的數(shù)量關系并說明理由.15.如圖,在平面直角坐標系中,,CD//x軸,CD=AB.(1)求點D的坐標:(2)四邊形OCDB的面積四邊形OCDB;(3)在y軸上是否存在點P,使△PAB=四邊形OCDB;若存在,求出點P的坐標,若不存在,請說明理由.16.某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A、B兩種型號的電風扇的銷售單價;(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.17.在平面直角坐標系中,已知點,,連接,將向下平移6個單位得線段,其中點的對應點為點.(1)填空:點的坐標為______,線段平移到掃過的面積為______.(2)若點是軸上的動點,連接.①如圖,當點在軸正半軸時,線段與線段相交于點,用等式表示三角形的面積與三角形的面積之間的關系,并說明理由.②當將四邊形的面積分成1∶3兩部分時,求點的坐標.18.在平面直角坐標系中,點,滿足關系式.(1)求,的值;(2)若點滿足的面積等于,求的值;(3)線段與軸交于點,動點從點出發(fā),在軸上以每秒個單位長度的速度向下運動,動點從點出發(fā),以每秒個單位長度的速度向右運動,問為何值時有,請直接寫出的值.19.歷史上的數(shù)學巨人歐拉最先把關于x的多項式用記號f(x)來表示.例如f(x)=x2+3x-5,把x=某數(shù)時多項式的值用f(某數(shù))來表示.例如x=-1時多項式x2+3x-5的值記為f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x2-3x+1,分別求出g(-1)和g(-2);(2)已知h(x)=ax3+2x2-ax-6,當h()=a,求a的值;(3)已知f(x)=--2(a,b為常數(shù)),當k無論為何值,總有f(1)=0,求a,b的值.20.已知:用3輛A型車和2輛B型車載滿貨物一次可運貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運貨l8噸,某物流公刊現(xiàn)有35噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.根據(jù)以上信息,解答下列問題:(1)l輛A型車和l輛B型車都載滿貨物一次可分別運貨多少噸?(2)請你幫該物流公司設計租車方案;(3)若A型車每輛需租金200元/次,B型車每輛需租金240元/次,請選出最省錢的租車方案,并求出最少租車費.21.如圖,,是的平分線,和的度數(shù)滿足方程組,(1)求和的度數(shù);(2)求證:.(3)求的度數(shù).22.數(shù)軸上有兩個動點M,N,如果點M始終在點N的左側,我們稱作點M是點N的“追趕點”.如圖,數(shù)軸上有2個點A,B,它們表示的數(shù)分別為-3,1,已知點M是點N的“追趕點”,且M,N表示的數(shù)分別為m,n.(1)由題意得:點A是點B的“追趕點”,AB=1-(-3)=4(AB表示線段AB的長,以下相同);類似的,MN=____________.(2)在A,M,N三點中,若其中一個點是另外兩個點所構成線段的中點,請用含m的代數(shù)式來表示n.(3)若AM=BN,MN=BM,求m和n值.23.已知,在平面直角坐標系中,三角形三個頂點的坐標分別為,,,軸,且、滿足.(1)則______;______;______;(2)如圖1,在軸上是否存在點,使三角形的面積等于三角形的面積?若存在,請求出點的坐標;若不存在,請說明理由;(3)如圖2,連接交于點,點在軸上,若三角形的面積小于三角形的面積,直接寫出的取值范圍是______.24.如圖,在平面直角坐標系中,點為坐標原點,點的坐標為,點的坐標為,其中是二元一次方程組的解,過點作軸的平行線交軸于點.(1)求點的坐標;(2)動點從點出發(fā),以每秒個單位長度的速度沿射線的方向運動,連接,設點的運動時間為秒,三角形的面積為,請用含的式子表示(不用寫出相應的的取值范圍);(3)在(2)的條件下,在動點從點出發(fā)的同時,動點從點出發(fā)以每秒個單位長度的速度沿線段的方向運動.過點作直線的垂線,點為垂足;過點作直線的垂線,點為垂足.當時,求的值.25.某治污公司決定購買10臺污水處理設備.現(xiàn)有甲、乙兩種型號的設備可供選擇,其中每臺的價格與月處理污水量如下表:甲型乙型價格(萬元/臺)xy處理污水量(噸/月)300260經調查:購買一臺甲型設備比購買一臺乙型設備多2萬元,購買3臺甲型設備比購買4臺乙型設備少2萬元.(1)求x,y的值;(2)如果治污公司購買污水處理設備的資金不超過91萬元,求該治污公司有哪幾種購買方案;(3)在(2)的條件下,如果月處理污水量不低于2750噸,為了節(jié)約資金,請為該公司設計一種最省錢的購買方案.26.如圖,正方形ABCD的邊長是2厘米,E為CD的中點,Q為正方形ABCD邊上的一個動點,動點Q以每秒1厘米的速度從A出發(fā)沿運動,最終到達點D,若點Q運動時間為秒.(1)當時,平方厘米;當時,平方厘米;(2)在點Q的運動路線上,當點Q與點E相距的路程不超過厘米時,求的取值范圍;(3)若的面積為平方厘米,直接寫出值.27.某體育拓展中心的門票每張10元,一次性使用考慮到人們的不同需求,也為了吸引更多的顧客,該拓展中心除保留原來的售票方法外,還推出了一種“購買個人年票”(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A、B兩類:A類年票每張120元,持票者可不限次進入中心,且無需再購買門票;B類年票每張60元,持票者進入中心時,需再購買門票,每次2元.(1)小麗計劃在一年中花費80元在該中心的門票上,如果只能選擇一種購買門票的方式,她怎樣購票比較合算?(2)小亮每年進入該中心的次數(shù)約20次,他采取哪種購票方式比較合算?(3)小明根據(jù)自己進入拓展中心的次數(shù),購買了A類年票,請問他一年中進入該中心不低于多少次?28.某加工廠用52500元購進A、B兩種原料共40噸,其中原料A每噸1500元,原料B每噸1000元.由于原料容易變質,該加工廠需盡快將這批原料運往有保質條件的倉庫儲存.經市場調查獲得以下信息:①將原料運往倉庫有公路運輸與鐵路運輸兩種方式可供選擇,其中公路全程120千米,鐵路全程150千米;②兩種運輸方式的運輸單價不同(單價:每噸每千米所收的運輸費);③公路運輸時,每噸每千米還需加收1元的燃油附加費;④運輸還需支付原料裝卸費:公路運輸時,每噸裝卸費100元;鐵路運輸時,每噸裝卸費220元.(1)加工廠購進A、B兩種原料各多少噸?(2)由于每種運輸方式的運輸能力有限,都無法單獨承擔這批原料的運輸任務.加工廠為了盡快將這批原料運往倉庫,決定將A原料選一種方式運輸,B原料用另一種方式運輸,哪種方案運輸總花費較少?請說明理由.29.某地葡萄豐收,準備將已經采摘下來的11400公斤葡萄運送杭州,現(xiàn)有甲、乙、丙三種車型共選擇,每輛車運載能力和運費如表表示(假設每輛車均滿載)車型甲乙丙汽車運載量(公斤/輛)600800900汽車運費(元/輛)500600700(1)若全部葡萄都用甲、乙兩種車型來運,需運費8700元,則需甲、乙兩種車型各幾輛?(2)為了節(jié)省運費,現(xiàn)打算用甲、乙、丙三種車型都參與運送,已知它們的總輛數(shù)為15輛,你能分別求出這三種車型的輛數(shù)嗎?怎樣安排運費最???30.如圖,已知點,,.(1)求的面積;(2)點是在坐標軸上異于點的一點,且的面積等于的面積,求滿足條件的點的坐標;(3)若點的坐標為,且,連接交于點,在軸上有一點,使的面積等于的面積,請直接寫出點的坐標__________(用含的式子表示).【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)a=-2,b=2;(2)P(0,-4)或(0,4);(3)①∠CAB+∠ODB=90°;②∠AED=45°.【分析】(1)根據(jù)非負數(shù)的性質即可求得a、b的值;(2)先求得S△ABC=4,設P(0,t),根據(jù)S△OPC=OP×2=××2=4求得t值,即可求得點P的坐標;(3)①已知BD∥AC,根據(jù)兩直線平行,內錯角相等可得∠CAB=∠OBD,由∠OBD+∠ODB=90°,即可得∠CAB+∠ODB=90°;②根據(jù)角平分線的定義及①中的結論,可求得∠3+∠4=45°;過點E作EF∥AC,即可得EF∥BD∥AC,根據(jù)平行線的性質可得∠3=∠1,∠2=∠4,由此求得∠AED=∠1+∠2=∠4+∠3=45°.【詳解】(1)∵,∴a+2=0,b-2=0,∴a=-2,b=2;(2)∵a=-2,b=2,∴A(-2,0),C(2,2),∴S△ABC=AB?BC=×4×2=4;設P(0,t),∴S△OPC=OP×2=××2==4;∴t=4或t=-4,∴P(0,-4)或(0,4).(3)①∵BD∥AC,∴∠CAB=∠OBD,∵∠OBD+∠ODB=90°,∴∠CAB+∠ODB=90°;②∵AE,DE分別平分∠CAB,∠ODB,∴∠3=,∠4=,∵∠CAB+∠ODB=90°,∴∠3+∠4=+=45°,過點E作EF∥AC,∵BD∥AC,∴EF∥BD∥AC,∴∠3=∠1,∠2=∠4,∴∠AED=∠1+∠2=∠4+∠3=45°.【點睛】本題考查了坐標與圖形性質,熟知非負數(shù)的性質、三角形的面積公式及平行線的性質是解決問題的關鍵.2.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點作OF∥CD,根據(jù)平行線的判定和性質可得∠OCD、∠BO′E′的數(shù)量關系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點睛】此題考查了平行線的判定和性質,平移的性質,直角的定義,角平分線的定義,正確作出輔助線是解決問題的關鍵.3.(1)見解析;(2)10°;(3)【分析】(1)過點E作EF∥CD,根據(jù)平行線的性質,兩直線平行,內錯角相等,得出結合已知條件,得出即可證明;(2)過點E作HE∥CD,設由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質,得出再由平分,得出則,則可列出關于x和y的方程,即可求得x,即的度數(shù);(3)過點N作NP∥CD,過點M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因為,代入的式子即可求出.【詳解】(1)過點E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點E作HE∥CD,如圖,設由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點N作NP∥CD,過點M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點睛】本題考查平行線的性質,角平分線的定義,解決問題的關鍵是作平行線構造相等的角,利用兩直線平行,內錯角相等,同位角相等來計算和推導角之間的關系.4.(1)兩直線平行,內錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質即可完成填空;(2)結合(1)的輔助線方法即可完成證明;(3)結合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關系.【詳解】解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內錯角相等;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點睛】考核知識點:平行線的判定和性質.熟練運用平行線性質和判定,添加適當輔助線是關鍵.5.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質,熟練掌握角平分線和平行線的有關性質是解題的關鍵.6.(1)見解析;(2)55°;(3)【分析】(1)根據(jù)平行線的判定定理與性質定理解答即可;(2)①如圖2,過點作,當點在點的左側時,根據(jù),,根據(jù)平行線的性質及角平分線的定義即可求的度數(shù);②如圖3,過點作,當點在點的右側時,,,根據(jù)平行線的性質及角平分線的定義即可求出的度數(shù).【詳解】解:(1)如圖1,過點作,則有,,,,;(2)①如圖2,過點作,有.,...即,平分,平分,,,.答:的度數(shù)為;②如圖3,過點作,有.,,...即,平分,平分,,,.答:的度數(shù)為.【點睛】本題考查了平行線的判定與性質,解決本題的關鍵是熟練掌握平行線的判定與性質.7.(1)兩;(2)2,3;(3)24,-48.【分析】(1)根據(jù)題中所給的分析方法先求出這32768的立方根都是兩位數(shù);(2)繼續(xù)分析求出個位數(shù)和十位數(shù)即可;(3)利用(1)(2)中材料中的過程進行分析可得結論.【詳解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10<<100,∴是兩位數(shù);故答案為:兩;(2)∵只有個位數(shù)是2的立方數(shù)是個位數(shù)是8,∴的個位上的數(shù)是2劃去32768后面的三位數(shù)768得到32,因為33=27,43=64,∵27<32<64,∴30<<40.∴的十位上的數(shù)是3.故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個位數(shù)是4的立方數(shù)是個位數(shù)是4,∴的個位上的數(shù)是4劃去13824后面的三位數(shù)824得到13,因為23=8,33=27,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個位數(shù)是8的立方數(shù)是個位數(shù)是2,∴的個位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,因為43=64,53=125,∵64<110<125,∴40<<50.∴=-48;故答案為:24,-48.【點睛】此題考查立方根,解題關鍵在于理解一個數(shù)的立方的個位數(shù)就是這個數(shù)的個位數(shù)的立方的個位數(shù).8.(1);;(2);;(3).【分析】(1)觀察前4個等式的分母先得出第5個式子的分母,再依照前4個等式即可得出答案;(2)根據(jù)前4個等式歸納類推出一般規(guī)律即可;(3)利用題(2)的結論,先寫出中各數(shù)的值,然后通過提取公因式、有理數(shù)加減法、乘法運算計算即可.【詳解】(1)觀察前4個等式的分母可知,第5個式子的分母為則第5個式子為:故應填:;;(2)第1個等式的分母為:第2個等式的分母為:第3個等式的分母為:第4個等式的分母為:歸納類推得,第n個等式的分母為:則第n個等式為:(n為正整數(shù))故應填:;;(3)由(2)的結論得:則.【點睛】本題考查了有理數(shù)運算的規(guī)律類問題,依據(jù)已知等式歸納總結出等式的一般規(guī)律是解題關鍵.9.(1)5;(2)5或1;(3)1+y-2x;(4)t1=3;t2=【分析】(1)根據(jù)題中的新運算列出算式,計算即可得到結果;(2)根據(jù)題中的新運算列出方程,解方程即可得到結果;(3)根據(jù)題中的新運算列出代數(shù)式,根據(jù)數(shù)軸得出x、y的取值范圍進行化簡即可;(4)根據(jù)A、B在數(shù)軸上的移動方向和速度可分別用代數(shù)式表示出數(shù)和,再根據(jù)(2)的解題思路即可得到結果.【詳解】解:(1);(2)依題意得:,化簡得:,所以或,解得:x=5或x=1;(3)由數(shù)軸可知:0<x<1,y<0,所以===(4)依題意得:數(shù)a=?1+t,b=3?t;因為,所以,化簡得:,解得:t=3或t=,所以當時,的值為3或.【點睛】本題主要考查了定義新運算、有理數(shù)的混合運算和解一元一次方程,根據(jù)定義新運算列出關系式是解題的關鍵.10.(1)A;(2)①B;②C;③B;(3)①③.【分析】(1)計算,結合計算結果即可進行判斷;(2)①從A類數(shù)中任取兩個數(shù)進行計算,即可求解;②從A、B兩類數(shù)中任取兩個數(shù)進行計算,即可求解;③根據(jù)題意,從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,再除以3,即可得到答案;(3)根據(jù)m,n的余數(shù)之和,舉例,觀察即可判斷.【詳解】解:(1)根據(jù)題意,∵,∴2020被3除余數(shù)為1,屬于A類;故答案為:A.(2)①從A類數(shù)中任取兩個數(shù),如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴兩個A類數(shù)的和被3除余數(shù)為2,則它們的和屬于B類;②從A、B類數(shù)中任取一數(shù),與①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴從A、B類數(shù)中任取一數(shù),則它們的和屬于C類;③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,則,∴,∴余數(shù)為2,屬于B類;故答案為:①B;②C;③B.(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),余數(shù)之和為:m×1+n×2=m+2n,∵最后的結果屬于C類,∴m+2n能被3整除,即m+2n屬于C類,①正確;②若m=1,n=1,則|mn|=0,不屬于B類,②錯誤;③觀察可發(fā)現(xiàn)若m+2n屬于C類,m,n必須是同一類,③正確;綜上,①③正確.故答案為:①③.【點睛】本題考查了新定義的應用和有理數(shù)的除法,解題的關鍵是熟練掌握新定義進行解答.11.(1)5,3;(2)有正格數(shù)對,正格數(shù)對為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對.將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對為:.【點睛】本題考查的知識點是實數(shù)的運算,理解新定義是解此題的關鍵.12.(1)4,-4;(2)1;(2)±12.【分析】(1)先估算出的范圍,即可得出答案;(2)先估算出、的范圍,求出a、b的值,再代入求出即可;(3)先估算出的范圍,求出x、y的值,再代入求出即可.【詳解】解:(1)∵4<<5,∴的整數(shù)部分是4,小數(shù)部分是-4,故答案為4,-4;(2)∵2<<3,∴a=-2,∵3<<4,∴b=3,∴a+b-=-2+3-=1;(3)∵100<110<121,∴10<<11,∴110<100+<111,∵100+=x+y,其中x是整數(shù),且0<y<1,∴x=110,y=100+-110=-10,∴x++24-y=110++24-+10=144,x++24-y的平方根是±12.【點睛】本題考查了估算無理數(shù)的大小,能估算出、、、的范圍是解此題的關鍵.13.(1)A(0,5),B(4,0);(2)①E(0,﹣);②﹣2或6;(3)24.【分析】(1)根據(jù)二次根式和偶次冪的非負性得出a,b解答即可;(2)①根據(jù)三角形的面積公式得出點C的坐標,根據(jù)平行線的性質解答即可;②延長CA交直線l于點H(a,10),過點H作HM⊥x軸于點M,根據(jù)三角形面積公式解答即可;(3)平移GH到DM,連接HM,根據(jù)三角形面積公式解答即可.【詳解】解:(1)∵,且,(b﹣4)2≥0,∴a﹣5=0,b﹣4=0,解得:a=5,b=4,∴A(0,5),B(4,0);(2)①連接BE,如圖1,∵,∴BC=6,∴C(﹣2,0),∵AB∥CE,∴S△ABC=S△ABE,∴,∴AE=,∴OE=,∴E(0,﹣);②∵F(m,10),∴點F在過點G(0,10)且平行于x軸的直線l上,延長CA交直線l于點H(a,10),過點H作HM⊥x軸于點M,則M(a,0),如圖2,∵S△HCM=S△ACO+S梯形AOMH,∴,解得:a=2,∴H(2,10),∵S△AFC=S△CFH﹣S△AFH,∴,∴FH=4,∵H(2,10),∴F(﹣2,10)或(6,10),∴m=﹣2或6;(3)平移GH到DM,連接HM,則GD∥HM,GD=HM,如圖3,四邊形BDHG的面積=△BHM的面積,當BH⊥HM時,△BHM的面積最大,其最大值=.【點睛】本題主要考查圖形與坐標及平移的性質,熟練掌握圖形與坐標及平移的性質是解題的關鍵.14.(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質即可得出答案;(2)過點B作BD∥a.由平行線的性質得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進而得出結論;(3)過點C
作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過點B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過點C
作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點睛】本題是三角形綜合題目,考查了平移的性質、直角三角形的性質、平行線的判定與性質、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質和平行線的性質是解題的關鍵.15.(1)(2)7(3)點的坐標為或【詳解】試題分析:⑴抓住∥軸,可以推出縱坐標相等,而是橫坐標之差的絕對值,以此可以求出點的坐標,根據(jù)圖示要舍去一種情況.⑵四邊形是梯形,根據(jù)點的坐標可以求出此梯形的上、下底和高,面積可求.⑶存在性問題可以先假設存在,在假設的基礎上以△=四邊形為等量關系建立方程,以此來探討在軸上是否存在著符合條件的點.試題解析:⑴.∵∥軸,∴縱坐標相等;∵∴點的縱坐標也為2.設點的坐標為,則.又,且,∴,解得:.由于點在第一象限,所以,所以的坐標為.⑵.∵∥軸,且∴∴四邊形=.⑶.假設在軸上存在點,使△=四邊形.設的坐標為,則,而∴△=.∵△=四邊形,四邊形∴,解得;.均符合題意.∴在軸上存在點,使△=四邊形.點的坐標為或.16.(1)A、B兩種型號電風扇的銷售單價分別為250元、210元;(2)超市最多采購A種型號電風扇10臺時,采購金額不多于5400元;(3)超市不能實現(xiàn)利潤1400元的目標;【分析】(1)根據(jù)第一周和第二周的銷售量和銷售收入,可列寫2個等式方程,再求解二元一次方程組即可;(2)利用不多于5400元這個量,列寫不等式,得到A型電風扇a臺的一個取值范圍,從而得出a的最大值;(3)將B型電風扇用(30-a)表示出來,列寫A、B兩型電風扇利潤為1400的等式方程,可求得a的值,最后在判斷求解的值是否滿足(2)中a的取值范圍即可【詳解】解:(1)設A、B兩種型號電風扇的銷售單價分別為x元、y元,依題意得:,解得:,答:A、B兩種型號電風扇的銷售單價分別為250元、210元.(2)設采購A種型號電風扇a臺,則采購B種型號電風扇(30-a)臺.依題意得:200a+170(30-a)≤5400,解得:a≤10.答:超市最多采購A種型號電風扇10臺時,采購金額不多于5400元;(3)依題意有:(250-200)a+(210-170)(30-a)=1400,解得:a=20,∵a≤10,∴在(2)的條件下超市不能實現(xiàn)利潤1400元的目標.【點睛】本題是二元一次方程和一元一次不等式應用題的綜合考查,解題關鍵是依據(jù)題意,找出等量關系式(不等關系式),然后按照題目要求相應求解17.(1);24;(2)①;見解析;②或【分析】(1)由平移的性質得出點C坐標,AC=6,再求出AB,即可得出結論;(2)①過點作交于,分別用CE表示出兩個三角形的面積,即可得到答案;②根據(jù)題意,可分為兩種情況進行討論分析:(i)當交線段于,且將四邊形分成面積為兩部分時;當交于點,將四邊形分成面積為兩部分時;分別求出點P的坐標即可.【詳解】解:(1)∵點A(3,5),將AB向下平移6個單位得線段CD,∴C(3,56),即:C(3,1),由平移得,AC=6,四邊形ABDC是矩形,∵A(3,5),B(7,5),∴AB=73=4,∴CD=4,∴點D的坐標為:;∴S四邊形ABDC=AB?AC=4×6=24,即:線段AB平移到CD掃過的面積為24;故答案為:;24;(2)①過點作交于,則,如圖:∴,又∵,∴.②(i)當交線段于,且將四邊形分成面積為兩部分時,連接,延長交軸于點,則,∵,又∵,∴,∴,即,∵,∴,∴,∴.(ii)當交于點,將四邊形分成面積為兩部分時,連接,延長交軸于點,則.過點作交的延長線于點,則,∴,,即,∵,∴,又∵,即,∴,∴,∴.綜上所述,或.【點睛】此題是幾何變換綜合題,主要考查了平移的性質,矩形的判定,三角形的面積公式,用分類討論的思想是解本題的關鍵.18.(1),;(2)或;(3)或【分析】(1)根據(jù)一個數(shù)的平方與絕對值均非負,且其和為0,則可得它們都為0,從而可求得a和b的值;(2)過點P作直線l垂直于x軸,延長交直線于點,設點坐標為,過作交直線于點,根據(jù)面積關系求出Q點坐標,再求出PQ的長度,即可求出n的值;(3)先根據(jù)求出C點坐標,再根據(jù)求出D點坐標,根據(jù)題意可得F點坐標,由得關于t的方程,求出t值即可.【詳解】(1),,且,,(2)過作直線垂直于軸,延長交直線于點,設點坐標為,過作交直線于點,如圖所示∵∴解得,點坐標為∵∴解得:或(3)當或時,有.如圖,延長BA交x軸于點D,過A點作AG⊥x軸于點G,過B點作BN⊥x軸于點N,∵∴解得:∴∵∴解得:∵∴當運動t秒時,∴∵CE=t∴,∵∴解得:或.【點睛】本題主要考查三角形的面積,含絕對值方程解法,熟練掌握直角坐標系的知識,三角形的面積,梯形的面積等知識是解題的關鍵,難點在于對圖形進行割補轉化為易求面積的圖形.19.(1)g(-1)=2g(-2)=-1(2)a=-4(3)a=,b=-4.【解析】【分析】(1)將x=-1和x=-2分別代入可得出答案;(2)將x=代入可得關于a的一元一次方程,解出即可;(3)由f(1)=0,把x=1代入可得關于a、b、k的方程,根據(jù)無論k為何值時,都成立就可求出a、b的值.【詳解】(1)由題意得:g(-1)=-2×(-1)2-3×(-1)+1=2;g(-2)=-2×(-2)2-3×(-2)+1=-1;(2)由題意得:,解得:a=-4;(3)∵k無論為何值,總有f(1)=0,∴=0,則當k=1、k=0時,可得方程組,解得:.【點睛】本題考查了代數(shù)式求值、解一元一次方程、一元一次方程的解、解二元一次方程組等,讀懂新定義是解題的關鍵.20.(1)A型車、B型車都裝滿貨物一次可以分別運貨3噸、4噸;(2)最省錢的租車方案是方案一:A型車8輛,B型車2輛,最少租車費為2080元.【分析】(1)設每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,根據(jù)題目中的等量關系:用3輛A型車和2輛B型車載滿貨物一次可運貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運貨l8噸,列方程組求解即可;(2)由題意得出3a+4b=35,然后由a、b為整數(shù)解,得到三中租車方案;(3)根據(jù)(2)中的所求方案,利用A型車每輛需租金200元/次,B型車每輛需租金240元/次,分別求出租車費用即可.【詳解】解:(1)設每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,依題意列方程組為:解得答:1輛A型車輛裝滿貨物一次可運3噸,1輛B型車裝滿貨物一次可運4噸.(2)結合題意,和(1)可得3a+4b=35∴a=∵a、b都是整數(shù)∴或或答:有3種租車方案:方案一:A型車9輛,B型車2輛;方案二:A型車5輛,B型車5輛;方案三:A型車1輛,B型車8輛.(3)∵A型車每輛需租金200元/次,B型車每輛需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省錢的租車方案是方案一:A型車1輛,B型車8輛,最少租車費為2120元.【點睛】此題主要考查了二元一次方程組以及二元一次方程的解法,關鍵是明確二元一次方程有無數(shù)解,但在解與實際問題有關的二元一次方程組時,要結合未知數(shù)的實際意義求解.21.(1)和的度數(shù)分別為和;(2)見解析;(3)【分析】根據(jù),解二元一次方程組,求出和的度數(shù);根據(jù)平行線判定定理,判定;由“是的平分線”:,再根據(jù)平行線判定定理,求出的度數(shù).【詳解】解:(1)①②,得,,代入①得和的度數(shù)分別為和.(2),(3)是的平分線,【點睛】本題運用二元一次方程組給出已知條件,熟練掌握二元一次方程組的解法以及平行線相關定理是解題的關鍵.22.(1)n-m;(2)①M是AN的中點,n=2m+3;②A是MN中點,n=-m-6;③N是AM的中點,;(3)或或.【分析】(1)由兩點間距離直接求解即可;(2)分三種情況討論:①M是A、N的中點,n=2m+3;②當A點在M、N點中點時,n=﹣6﹣m;③N是M、A的中點時,n;(3)由已知可得|m+3|=|n﹣1|,n﹣m|m+3|,分情況求解即可.【詳解】(1)MN=n﹣m.故答案為:n﹣m;(2)分三種情況討論:①M是A、N的中點,∴n+(-3)=2m,∴n=2m+3;②A是M、N點中點時,m+n=-3×2,∴n=﹣6﹣m;③N是M、A的中點時,-3+m=2n,∴n;(3)∵AM=BN,∴|m+3|=|n﹣1|.∵MNBM,∴n﹣m|m+3|,∴或或或,∴或或或.∵n>m,∴或或.【點睛】本題考查了列代數(shù)式,解二元一次方程組以及數(shù)軸上兩點間的距離公式,解答本題的關鍵是:(1)根據(jù)兩點間的距離公式求出線段AB的長;(2)分三種情況討論;(3)分四種情況討論.解決該題型題目時,結合數(shù)量關系表示出線段的長度,再根據(jù)線段間的關系列出方程是關鍵.23.(1)?3,4,4;(2)(0,)或(0,);(3)n<?5或n>?1【分析】(1)根據(jù)非負數(shù)的性質構建方程組,求出a和b,再根據(jù)BC∥x軸,可得c的值;(2)當點D在直線AB的下方時,如圖1?1中,延長BC交y軸于E(0,4),連接AE.設D(0,m).當點D在直線AB的上方時,如圖1?2中,連接OB,設D(0,m).分別構建方程,可得結論.(3)如圖2中,當點N在點A的右側時,連接MN,OB,設M(a,b),利用面積法求出b的值,再求出S△BNM=S△BCM時,n的值,同法求出當點N在點的左側時,且S△BNM=S△BCM時,n的值,結合圖象可得結論.【詳解】解:(1)∵,又∵≥0,|2a?b+10|≥0,∴a+b?1=0且2a?b+10=0,∴a=?3,b=4,∵BC∥x軸,∴c=4,∴a=?3,b=4,c=4,故答案為:?3,4,4;(2)當點D在直線AB的下方時,如圖1?1中,延長BC交y軸于E(0,4),連接AE.設D(0,m).∵S△ABD=S△AED+S△BDE?S△ABE=S△ABC,∴×(4?m)×3+×(4?m)×4?×4×4=×2×4,∴m=;當點D在直線AB的上方時,如圖1?2中,連接OB,設D(0,m).∵S△ABD=S△ADO+S△ODB?S△ABO=S△ABC,∴×m×3+×m×4?×3×4=×2×4,∴m=.綜上所述,滿足條件的點D的坐標為(0,)或(0,).(3)如圖2中,當點N點A的右側時,連接MN,OB.設M(a,b),∵S△BCM=S△OBC?(S△AOB?S△AOM),∴×2×(4?b)=×2×4?(×3×4?12×3×b),解得b=,當S△BNM=S△BCM時,則有×(n+3)×4?×(n+3)×=×2×(4?),解得n=?1,當點N在點A的左側時,且S△BNM=S△BCM時,同法可得n=?5,觀察圖象可知,滿足條件的n的值為n<?5或n>?1.【點睛】本題屬于三角形綜合題,考查了三角形的面積,非負數(shù)的性質,平行線的性質等知識,解題的關鍵是學會用分類討論的思想思考問題,學會利用未知數(shù)構建方程解決問題,對于初一學生來說題目有一定的難度.24.(1);(2);(3)或4.【分析】(1)先求出是二元一次方程組的解,然后代入A、B的坐標即可解答;(2)先求出OC的長,分點P在線段OB上和OB的延長線上兩種情況,分別利用三角形面積公式計算即可;(3)分兩種情況解答:①當點P在線段OB上時,連接PQ,過點M作PM⊥AC交AC的延長線于M,可得OP=2CQ,構建方程解答即可;②當點P在BO的延長線上時,同理可解.【詳解】解:(1)解二元一次方程組,得:∴A(6,7),B(-8,0);(2)①當點P在線段OB上時,BP=4t,OP=8-4t,∴②當點P在OB延長線上時,綜上所述;(3)①當點P在線段OB上時,如圖:連接PQ,過點M作PM⊥AC交AC的延長線于M,又;②當在線段延長線上時同理可得:.綜上,滿足題意t的值為或4.【點睛】本題主要考查了三角形的面積、二元一次方程組等知識點,學會用分類討論的思想思考問題以及利用面積法解決線段之間的關系成為解答本題的關鍵.25.(1);(2)該公司有6種購買方案,方案1:購買10臺乙型設備;方案2:購買1臺甲型設備,9臺乙型設備;方案3:購買2臺甲型設備,8臺乙型設備;方案4:購買3臺甲型設備,7臺乙型設備;方案5:購買4臺甲型設備,6臺乙型設備;方案6:購買5臺甲型設備,5臺乙型設備;(3)最省錢的購買方案為:購買4臺甲型設備,6臺乙型設備.【分析】(1)由一臺A型設備的價格是x萬元,一臺乙型設備的價格是y萬元,根據(jù)題意得等量關系:購買一臺甲型設備-購買一臺乙型設備=2萬元,購買4臺乙型設備-購買3臺甲型設備=2萬元,根據(jù)等量關系,列出方程組,再解即可;(2)設購買甲型設備m臺,則購買乙型設備(10-m)臺,由題意得不等關系:購買甲型設備的花費+購買乙型設備的花費≤91萬元,根據(jù)不等關系列出不等式,再解即可;(3)由題意可得:甲型設備處理污水量+乙型設備處理污水量≥2750噸,根據(jù)不等關系,列出不等式,再解即可.【詳解】(1)依題意,得:,解得:.(2)設該治污公司購進m臺甲型設備,則購進(10﹣m)臺乙型設備,依題意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m為非零整數(shù),∴m=0,1,2,3,4,5,∴該公司有6種購買方案,方案1:購買10臺乙型設備;方案2:購買1臺甲型設備,9臺乙型設備;方案3:購買2臺甲型設備,8臺乙型設備;方案4:購買3臺甲型設備,7臺乙型設備;方案5:購買4臺甲型設備,6臺乙型設備;方案6:購買5臺甲型設備,5臺乙型設備.(3)依題意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.當m=4時,總費用為10×4+8×6=88(萬元);當m=5時,總費用為10×5+8×5=90(萬元).∵88<90,∴最省錢的購買方案為:購買4臺甲型設備,6臺乙型設備.【點睛】此題主要考查了二元一次方程組的應用和一元一次不等式的應用,關鍵是正確理解題意,找出題目中的等量關系和不等關系,列出方程(組)和不等式.26.(1)1;(2)(3)【分析】(1)根據(jù)三角形的面積公式即可求解;(2)根據(jù)題意列出不等式組故可求解;(3)分Q點在AB上、BC上和CD上分別列出方程即可求解.【詳解】(1)當時,=1平方厘米;當時,=平方厘米;故答案為;;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年抗心律失常藥項目建議書
- 2025年離合器分離軸承項目合作計劃書
- 2025年充換電站項目發(fā)展計劃
- 腸梗阻術前術后護理
- 遼寧省2025秋九年級英語全冊Unit5Whataretheshirtsmadeof課時4SectionB(1a-1e)課件新版人教新目標版
- 員工溝通會課件
- 植皮術后護理要點解析
- 護理法律與醫(yī)療糾紛法律咨詢
- 急診護理倫理實踐競賽
- 肌腱術后brace的使用與注意事項
- GA 2113-2023警服女禮服
- 國開機考答案-鋼結構(本)(閉卷)
- 紀委談話筆錄模板經典
- 消防安全制度和操作規(guī)程
- 叉車安全技術交底
- 國家預算實驗報告
- 工業(yè)園區(qū)綜合能源智能管理平臺建設方案合集
- 附件1:中國聯(lián)通動環(huán)監(jiān)控系統(tǒng)B接口技術規(guī)范(V3.0)
- 正弦函數(shù)、余弦函數(shù)的圖象 說課課件
- 閉合性顱腦損傷病人護理查房
- 《你看起來好像很好吃》繪本課件
評論
0/150
提交評論