版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆湖南省長郡中學高二上數(shù)學期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,,且BC邊上的高為,則滿足條件的的個數(shù)為()A.3 B.2C.1 D.02.數(shù)列中,,,則()A.32 B.62C.63 D.643.內(nèi)角A,B,C的對邊分別為a,b,c.若,則一定是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形4.函數(shù)在上的最小值為()A. B.C.-1 D.5.已知角的終邊經(jīng)過點,則,的值分別為A., B.,C., D.,6.已知直線是圓的對稱軸,過點A作圓C的一條切線,切點為B,則|AB|=()A.1 B.2C.4 D.87.已知命題,,則()A., B.,C., D.,8.甲乙兩個雷達獨立工作,它們發(fā)現(xiàn)飛行目標的概率分別是0.9和0.8,飛行目標被雷達發(fā)現(xiàn)的概率為()A.0.72 B.0.26C.0.7 D.0.989.已知向量,則下列結(jié)論正確的是()A.B.C.D.10.過拋物線的焦點作互相垂直的弦,則的最小值為()A.16 B.18C.32 D.6411.已知拋物線的焦點為,點在拋物線上,且,則的橫坐標為()A.1 B.C.2 D.312.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.計算:________14.已知圓被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,則圓心的軌跡方程為______,若點,,則周長的最小值為______15.過點且與直線平行的直線的方程是______.16.在報名的3名男教師和3名女教師中,選取3人參加義務獻血,要求男、女教師都有,則不同的選取方法數(shù)為__________.(結(jié)果用數(shù)值表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)是首項為的等差數(shù)列的前項和,是首項為1的等比數(shù)列的前項和,為數(shù)列的前項和,為數(shù)列的前項和,已知.(1)若,求;(2)若,求.18.(12分)已知拋物線的焦點到準線的距離為2.(1)求C的方程:(2)過C上一動點P作圓兩條切線,切點分別為A,B,求四邊形PAMB面積的最小值.19.(12分)如圖,在四棱錐中,四邊形是直角梯形,,,,為等邊三角形.(1)證明:;(2)求點到平面的距離.20.(12分)如圖,從參加環(huán)保知識競賽的學生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:(1)[79.5,89.5)這一組的頻數(shù)、頻率分別是多少?(2)估計這次環(huán)保知識競賽的眾數(shù)、中位數(shù)、平均數(shù)是多少?21.(12分)已知數(shù)列的前n項積,數(shù)列為等差數(shù)列,且,(1)求與的通項公式;(2)若,求數(shù)列的前n項和22.(10分)已知數(shù)列{an}滿足*(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{an}的前n項和Sn
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用等面積法求得,再利用正弦定理求得,利用內(nèi)角和的關(guān)系及兩角和差化積公式,二倍角公式轉(zhuǎn)化為,再利用正弦函數(shù)的性質(zhì)求滿足條的的個數(shù),即可求解.【詳解】由三角形的面積公式知,即由正弦定理知所以,即,即,即利用兩角和的正弦公式結(jié)合二倍角公式化簡得又,則,,且由正弦函數(shù)的性質(zhì)可知,滿足的有2個,即滿足條件的的個數(shù)為2.故選:B2、C【解析】把化成,故可得為等比數(shù)列,從而得到的值.【詳解】數(shù)列中,,故,因為,故,故,所以,所以為等比數(shù)列,公比為,首項為.所以即,故,故選C.【點睛】給定數(shù)列的遞推關(guān)系,我們常需要對其做變形構(gòu)建新數(shù)列(新數(shù)列的通項容易求得),常見的遞推關(guān)系和變形方法如下:(1),取倒數(shù)變形為;(2),變形為,也可以變形為;3、C【解析】利用余弦定理角化邊整理可得.【詳解】由余弦定理有,整理得,故一定是直角三角形.故選:C4、D【解析】求出函數(shù)的導函數(shù),根據(jù)導數(shù)的符號求出函數(shù)的單調(diào)區(qū)間,再根據(jù)函數(shù)的單調(diào)性即可得出答案.【詳解】解:因為,所以,當時,,單調(diào)遞減;當時,,單調(diào)遞增,故.故選:D.5、C【解析】利用任意角的三角函數(shù)的定義:,,,代入計算即可得到答案【詳解】由于角的終邊經(jīng)過點,則,,(為坐標原點),所以由任意角的三角函數(shù)的定義:,.故答案選C【點睛】本題考查任意角的三角函數(shù)的定義,解決此類問題的關(guān)鍵是掌握牢記三角函數(shù)定義并能夠熟練應用,屬于基礎(chǔ)題6、C【解析】首先將圓心坐標代入直線方程求出參數(shù)a,求得點A的坐標,由切線與圓的位置關(guān)系構(gòu)造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點A坐標為,,切點為B則,故選:C【點睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.7、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.8、D【解析】利用對立事件的概率求法求飛行目標被雷達發(fā)現(xiàn)的概率.【詳解】由題設(shè),飛行目標不被甲、乙發(fā)現(xiàn)的概率分別為、,所以飛行目標被雷達發(fā)現(xiàn)的概率為.故選:D9、D【解析】由題可知:,,,故選;D10、B【解析】根據(jù)拋物線方程求出焦點坐標,分別設(shè)出,所在直線方程,與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系及弦長公式求得,,然后利用基本不等式求最值.【詳解】拋物線的焦點,設(shè)直線的直線方程為,則直線的方程為.,,,.由,得,,同理可得..當且僅當,即時取等號.所以的最小值為.故選:B11、C【解析】利用拋物線的定義轉(zhuǎn)化為到準線的距離,即可求得.【詳解】拋物線的焦點坐標為,準線方程為,,∴,故選:C.12、B【解析】根據(jù)輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結(jié)論是或否,直至退出循環(huán).【詳解】,,,;,【點睛】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)無窮等比數(shù)列的求和公式直接即可求出答案.【詳解】.故答案為:.14、①.②.【解析】設(shè),圓半徑為,進而根據(jù)題意得,,進而得其軌跡方程為雙曲線,再根據(jù)雙曲線的定義,將周長轉(zhuǎn)化為求的最小值,進而求解.【詳解】解:如圖1,因為圓被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,所以,,所以中點,則,,所以,故設(shè),圓半徑為,則,,,所以,即所以圓心的軌跡方程為,表示雙曲線,焦點為,,如圖2,連接,由雙曲線的定義得,即,所以周長為,因為,所以周長的最小值為故答案為:;.15、【解析】設(shè)出直線的方程,代入點的坐標,求出直線的方程.【詳解】設(shè)過點且與直線平行的直線的方程為,將代入,則,解得:,所以直線的方程為.故答案為:16、18【解析】由題設(shè),選取方式有兩男教師一女教師或兩女教師一男教師,應用組合數(shù)求出選取方法數(shù).【詳解】選取方式有:選兩男教師一女教師或選兩女教師一男教師,∴不同的選取方法有:種.故答案為:18.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)列方程組解得等差數(shù)列的公差,即可求得其前項和;(2)列方程組解得等差數(shù)列的公差和等比數(shù)列的公比,以錯位相減法即可求得數(shù)列的前項和.【小問1詳解】設(shè)的公差為,的公比為,則,,因為即,解之得或,又因為,得所以或,故,或【小問2詳解】因為,所以,所以由解得(舍去)或,于是得,所以,因為,(1)所以,(2)所以由(1)(2)得:故18、(1)(2)【解析】(1)根據(jù)拋物線方程求出交點坐標和準線方程,求出p即可;(2)設(shè),利用兩點坐標求距離公式求出,根據(jù)四邊形PAMB的面積得到關(guān)于的二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【小問1詳解】因為C的焦點為,準線為,由題意得,即,因此.【小問2詳解】圓M的圓心為,半徑為1.由條件可知,,且,于是.設(shè),則.當時等號成立,所以四邊形PAMB面積的最小值為.19、(1)略;(2)【解析】(1)推導出BD⊥BC,PB⊥BC,從而BC⊥平面PBD,由此能證明PD⊥BC.(2)利用等體積求得點B到面的距離【詳解】(1)∵在四棱錐P﹣ABCD中,四邊形ABCD是直角梯形,DC=2AD=2AB=2,∠DAB=∠ADC=90°,PB,△PDC為等邊三角形∴BC=BD,∴BD2+BC2=CD2,PB2+BC2=PC2,∴BD⊥BC,PB⊥BC,∵BD∩PB=B,∴BC⊥平面PBD,∵PD?平面PBD,∴PD⊥BC(2)由(1)知,,故故得點B到面PCD的距離為【點睛】本題考查線線垂直的證明,考查點面距離的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題20、(1)0.25,15;(2)眾數(shù)為74.5,中位數(shù)為72.8,平均分為70.5.【解析】(1)直接利用頻率和頻數(shù)公式求解;(2)利用頻率分布直方圖的公式求眾數(shù)、中位數(shù)、平均數(shù).【詳解】(1)頻率=(89.5-79.5)×0.025=0.25;頻數(shù)=60×0.25=15.(2)[69.5,79.5)一組的頻率最大,人數(shù)最多,則眾數(shù)為74.5,左邊三個矩形的面積和為0.4,左邊四個矩形的面積和為0.7,所以中位數(shù)在第4個矩形中,設(shè)中位數(shù)為,所以中位數(shù)為72.8.平均分為44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.521、(1),.(2).【解析】(1)由已知得,,兩式相除得,由已知得,求得數(shù)列的公差為,由等差數(shù)列的通項公式可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津中醫(yī)藥大學第一附屬醫(yī)院招聘20人備考題庫及完整答案詳解一套
- 3D打印導板在神經(jīng)外科手術(shù)中的精準設(shè)計與精準定制
- 2025年寧波市升力同創(chuàng)科技咨詢服務有限公司招聘備考題庫有答案詳解
- 3D打印個性化骨缺損修復支架的血管化策略
- 2型糖尿病神經(jīng)病變的早期預防社區(qū)實踐
- 上海市2025年事業(yè)單位公開招聘高層次急需緊缺專業(yè)技術(shù)人才備考題庫及完整答案詳解1套
- 2025年韶山旅游發(fā)展集團招聘中層管理人員備考題庫帶答案詳解
- 2025年馬鞍山市住房公積金管理中心編外聘用人員招聘備考題庫完整答案詳解
- 核工業(yè)井巷建設(shè)集團有限公司2026年校園招聘備考題庫及答案詳解參考
- 2025年金華市軌道交通控股集團有限公司財務崗應屆畢業(yè)生招聘備考題庫完整參考答案詳解
- 拆遷勞務合同協(xié)議
- 2025年云南省交通投資建設(shè)集團有限公司下屬港投公司社會招聘51人備考題庫完整參考答案詳解
- 2025中國融通資產(chǎn)管理集團有限公司招聘(230人)(公共基礎(chǔ)知識)測試題附答案解析
- 工作交接表-交接表
- 2025年課件-(已瘦身)2023版馬原馬克思主義基本原理(2023年版)全套教學課件-新版
- 學堂在線 雨課堂 學堂云 醫(yī)學英語詞匯進階 期末考試答案
- 項目HSE組織機構(gòu)和職責
- 零基礎(chǔ)AI日語-初階篇智慧樹知到期末考試答案章節(jié)答案2024年重慶對外經(jīng)貿(mào)學院
- MOOC 理論力學-長安大學 中國大學慕課答案
- JC∕T 942-2022 丁基橡膠防水密封膠粘帶
- MOOC 工程材料學-華中科技大學 中國大學慕課答案
評論
0/150
提交評論