2026屆華中師大一附中數(shù)學高二上期末綜合測試試題含解析_第1頁
2026屆華中師大一附中數(shù)學高二上期末綜合測試試題含解析_第2頁
2026屆華中師大一附中數(shù)學高二上期末綜合測試試題含解析_第3頁
2026屆華中師大一附中數(shù)學高二上期末綜合測試試題含解析_第4頁
2026屆華中師大一附中數(shù)學高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆華中師大一附中數(shù)學高二上期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱為三角形的歐拉線已知的頂點,則的歐拉線方程為()A. B.C. D.2.已知橢圓與雙曲線有相同的焦點,且它們的離心率之積為1,則橢圓的標準方程為()A. B.C. D.3.已知,是球的球面上兩點,,為該球面上的動點,若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.4.已知橢圓的長軸長,短軸長,焦距長成等比數(shù)列,則橢圓離心率為()A. B.C. D.5.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg6.阿基米德是古希臘著名的數(shù)學家、物理學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知在平面直角坐標系中,橢圓的面積為,兩焦點與短軸的一個端點構成等邊三角形,則橢圓的標準方程是()A. B.C. D.7.是橢圓的焦點,點在橢圓上,點到的距離為1,則到的距離為()A.3 B.4C.5 D.68.若,,且,則()A. B.C. D.9.已知集合,從集合A中任取一點P,則點P滿足約束條件的概率為()A. B.C. D.10.設數(shù)列的前項和為,若,,,則、、、中,最大的是()A. B.C. D.11.若橢圓的一個焦點為,則的值為()A.5 B.3C.4 D.212.直線的傾斜角為()A.1 B.-1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為F,若拋物線上一點P到x軸的距離為2,則|PF|的值為___________.14.已知雙曲線與橢圓有公共的左、右焦點分別為,,以線段為直徑的圓與雙曲線C及其漸近線在第一象限內(nèi)分別交于M,N兩點,且線段的中點在另一條漸近線上,則的面積為___________.15.如圖,莖葉圖所示數(shù)據(jù)平均分為91,則數(shù)字x應該是__________16.已知直線與拋物線相交于A,B兩點,且,則拋物線C的準線方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的圓心在坐標原點,且過點M()(1)求圓C的方程;(2)已知點P是圓C上的動點,試求點P到直線的距離的最小值;18.(12分)命題p:直線l:與圓C:有公共點,命題q:雙曲線的離心率(1)若p,q均為真命題,求實數(shù)m的取值范圍;(2)若為真,為假,求實數(shù)m的取值范圍19.(12分)求下列函數(shù)的導數(shù)(1);(2)20.(12分)已知函數(shù),(1)求的單調(diào)區(qū)間;(2)當時,求證:在上恒成立21.(12分)如圖,在正方體中,E為的中點(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值22.(10分)正四棱柱的底面邊長為2,側棱長為4.E為棱上的動點,F(xiàn)為棱的中點.(1)證明:;(2)若E為棱上的中點,求直線BE到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意得出的歐拉線即為線段的垂直平分線,然后求出線段的垂直平分線的方程即可.【詳解】因為,所以線段的中點的坐標,線段所在直線的斜率,則線段的垂直平分線的方程為,即,因為,所以的外心、重心、垂心都在線段的垂直平分線上,所以的歐拉線方程為.故選:D【點睛】本題主要考走查直線的方程,解題的關鍵是準確找出歐拉線,屬于中檔題.2、A【解析】計算雙曲線的焦點為,離心率,得到橢圓的焦點為,離心率,計算得到答案.【詳解】雙曲線的焦點為,離心率,故橢圓的焦點為,離心率,即.解得,故橢圓標準方程為:.故選:.【點睛】本題考查了橢圓和雙曲線的離心率,焦點,橢圓的標準方程,意在考查學生的計算能力.3、C【解析】當平面時,三棱錐體積最大,根據(jù)棱長與球半徑關系即可求出球半徑,從而求出表面積.【詳解】當平面時,三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點睛】關鍵點點睛:本題考查三棱錐與球的組合體的綜合問題,本題的關鍵是判斷當平面時,三棱錐體積最大.4、A【解析】由題意,,結合,求解即可【詳解】∵橢圓的長軸長,短軸長,焦距長成等比數(shù)列∴∴又∵∴∴,即∴e=又在橢圓e>0∴e=故選:A5、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤故選D6、A【解析】由橢圓的面積為和兩焦點與短軸的一個端點構成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標準方程是.故選:A7、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因為,,所以,故選:C8、A【解析】由于對數(shù)函數(shù)的存在,故需要對進行放縮,結合(需證明),可放縮為,利用等號成立可求出,進而得解.【詳解】令,,故在上單調(diào)遞減,在上單調(diào)遞增,,故,即,當且僅當,等號成立.所以,當且僅當時,等號成立,又,所以,即,所以,又,所以,,故故選:A9、C【解析】根據(jù)圓的性質(zhì),結合兩條直線的位置關系、幾何概型計算公式進行求解即可.【詳解】,圓心坐標為,半徑為,直線互相垂直,且交點為,由圓的性質(zhì)可知:點P滿足約束條件的概率為,故選:C10、C【解析】求出的表達式,解不等式可得結果.【詳解】由已知可得,故數(shù)列為等差數(shù)列,且公差為,所以,,令可得.因此,當時,最大.故選:C.11、B【解析】由題意判斷橢圓焦點在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點在軸上,則,從而,解得:.故選:B.12、C【解析】根據(jù)直線斜率的定義即可求解.【詳解】,斜率為1,則傾斜角為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】先求出拋物線的焦點坐標和準線方程,再利用拋物線的定義可求得答案【詳解】拋物線的焦點為,準線為,因為拋物線上一點P到x軸的距離為2,所以由拋物線的定義可得,故答案為:314、【解析】求出橢圓焦點坐標,即雙曲線焦點坐標,即雙曲線的半焦距,再求出點坐標,利用中點在漸近線上得出的關系式,從而求得,然后可計算面積【詳解】由題意橢圓中,即,以線段為直徑的圓的方程為,由,解得(取第一象限交點坐標),,雙曲線的不在第一象限的漸近線方程為,,的中點坐標為,它在漸近線上,所以,化簡得,又,所以,雙曲線方程為,則得,所以故答案為:15、1【解析】結合莖葉圖以及平均數(shù)列出方程,即可求出結果.【詳解】由題意可知,解得,故答案為:1.16、【解析】將直線與拋物線聯(lián)立結合拋物線的定義即可求解.【詳解】解:直線與拋物線相交于A,B兩點設,直線與拋物線聯(lián)立得:所以所以即解得:所以拋物線C的準線方程為:.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由圓C的圓心在坐標原點,且過點,求得圓的半徑,利用圓的標準方程,即可求解;(2)由點到直線的距離公式,求得圓心到直線l的距離為,進而得到點P到直線的距離的最小值為,得出答案.【詳解】(1)由題意,圓C的圓心在坐標原點,且過點,所以圓C的半徑為,所以圓C的方程為.(2)由題意,圓心到直線l的距離為,所以P到直線的距離的最小值為.【點睛】本題主要考查了圓標準方程的求解,以及直線與圓的位置關系的應用,其中解答中熟練應用直線與圓的位置關系合理轉(zhuǎn)化是解答的關鍵,著重考查了轉(zhuǎn)化思想,以及推理與計算能力,屬于基礎題.18、(1),;(2).【解析】(1)求出,成立的等價條件,即可求實數(shù)的取值范圍;(2)若“”為假命題,“”為真命題,則、一真一假,當真假時,求出的取值范圍,當假真時,求出的取值范圍,然后取并集即可得答案【小問1詳解】若命題為真命題,則,解得:,若命題為真命題,則且,,解得,∴,均為真命題,實數(shù)的取值范圍是,;【小問2詳解】若為真,為假,則、一真一假;①當真假時,即“”且“或”,則此時的取值范圍是;當假真時,即“或”且“”,則此時的取值范圍是;綜上,的取值范圍是19、(1)見解析(2)見解析【解析】(1)導數(shù)四則運算中的乘除法則.(2)求導數(shù),主要考查復合函數(shù),外導乘內(nèi)導.【小問1詳解】【小問2詳解】.20、(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)證明見解析.【解析】(1)求得,根據(jù)其正負,即可判斷函數(shù)單調(diào)性從而求得函數(shù)單調(diào)區(qū)間;(2)根據(jù)題意,轉(zhuǎn)化目標不等式為,分別構造函數(shù),,利用導數(shù)研究其單調(diào)性,即可證明.【小問1詳解】因為,故可得,又為單調(diào)增函數(shù),令,解得,故當時,;當時,,故的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.【小問2詳解】當時,,要證,即證,又,則只需證,即證,令,,當時,,單調(diào)遞增,當時,,單調(diào)遞減,故當時,取得最大值;令,,又為單調(diào)增函數(shù),且時,,當時,,單調(diào)遞減,當時,,單調(diào)遞增,故當時,取得最小值.則,且當時,同時取得最小值和最大值,故,即,也即時恒成立.【點睛】本題考察利用導數(shù)求函數(shù)的單調(diào)區(qū)間,以及利用導數(shù)研究恒成立問題;處理本題的關鍵是合理轉(zhuǎn)化目標式,屬中檔題.21、(Ⅰ)證明見解析;(Ⅱ).【解析】(Ⅰ)證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結論;也可利用空間向量計算證明;(Ⅱ)可以將平面擴展,將線面角轉(zhuǎn)化,利用幾何方法作出線面角,然后計算;也可以建立空間直角坐標系,利用空間向量計算求解.【詳解】(Ⅰ)[方法一]:幾何法如下圖所示:在正方體中,且,且,且,所以,四邊形為平行四邊形,則,平面,平面,平面;[方法二]:空間向量坐標法以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,設正方體的棱長為,則、、、,,,設平面的法向量為,由,得,令,則,,則.又∵向量,,又平面,平面;(Ⅱ)[方法一]:幾何法延長到,使得,連接,交于,又∵,∴四邊形為平行四邊形,∴,又∵,∴,所以平面即平面,連接,作,垂足為,連接,∵平面,平面,∴,又∵,∴直線平面,又∵直線平面,∴平面平面,∴在平面中的射影在直線上,∴直線為直線在平面中的射影,∠為直線與平面所成的角,根據(jù)直線直線,可知∠為直線與平面所成的角.設正方體的棱長為2,則,,∴,∴,∴,即直線與平面所成角的正弦值為.[方法二]:向量法接續(xù)(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直線與平面所成角的正弦值為.[方法三]:幾何法+體積法如圖,設的中點為F,延長,易證三線交于一點P因為,所以直線與平面所成的角,即直線與平面所成的角設正方體的棱長為2,在中,易得,可得由,得,整理得所以所以直線與平面所成角的正弦值為[方法四]:純體積法設正方體的棱長為2,點到平面的距離為h,在中,,,所以,易得由,得,解得,設直線與平面所成的角為,所以【整體點評】(Ⅰ)的方法一使用線面平行的判定定理證明,方法二使用空間向量坐標運算進行證明;(II)第一種方法中使用純幾何方法,適合于沒有學習空間向量之前的方法,有利用培養(yǎng)學生的集合論證和空間想象能力,第二種方法使用空間向量方法,兩小題前后連貫,利用計算論證和求解,定為最優(yōu)解法;方法三在幾何法的基礎上綜合使用體積方法,計算較為簡潔;方法四不作任何輔助線,僅利用正余弦定理和體積公式進行計算,省卻了輔助

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論